Refine Your Search

Topic

Author

Search Results

Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Gear Train Mesh Efficiency Study: The Effects of an Anti-Backlash Gear

2014-04-01
2014-01-1769
In recent years, the focus on engine parasitic losses has increased as a result of the efforts to increase engine efficiency and reduce greenhouse gasses. The engine gear train, used to time the valve system and drive auxiliary loads, contributes to the overall engine parasitic losses. Anti-backlash gears are often used in engine gear trains to reduce gear rattle noise resulting from the torsional excitation of the gear train by the engine output torque. Friction between sliding surfaces at the gear tooth is a major source of power loss in gear trains. The effect of using anti-backlash gears on the gear friction power loss is not well known. As a part of the effort to reduce parasitic losses, the increase in friction power loss in the Cummins ISX 15 gear train due to the anti-backlash gear was quantitatively determined by modifying the methods given in ISO 14179-2 to fit the anti-backlash gear sub-assembly.
Journal Article

Perception of Diesel Engine Gear Rattle Noise

2015-06-15
2015-01-2333
Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
Journal Article

Investigation of the Impact of Real-World Aging on Diesel Oxidation Catalysts

2012-04-16
2012-01-1094
Real-world operation of diesel oxidation catalysts (DOCs), used in a variety of aftertreatment systems, subjects these catalysts to a large number of permanent and temporary deactivation mechanisms. These include thermal damage, induced by generating exotherm on the catalyst; exposure to various inorganic species contained in engine fluids; and the effects of soot and hydrocarbons, which can mask the catalyst in certain operating modes. While some of these deactivation mechanisms can be accurately simulated in the lab, others are specific to particular engine operation regimes. In this work, a set of DOCs, removed from prolonged service in the field, has been subjected to a detailed laboratory study. Samples obtained from various locations in these catalysts were used to characterize the extent and distribution of deactivation.
Journal Article

Smart Sensing and Decomposition of NOx and NH3 Components from Production NOx Sensor Signals

2011-04-12
2011-01-1157
Production NO sensors have a strong cross-sensitivity to ammonia which limits their use for closed-loop SCR control and diagnostics since increases in sensor output can be caused by either gas component. Recently, Ammonia/NO Ratio (ANR) perturbation methods have been proposed for determining the dominant component in the post-SCR exhaust as part of the overall SCR control strategy, but these methods or the issue of sensor cross-sensitivity have not been critically evaluated or studied in their own right. In this paper the dynamic sensor direct- and cross-sensitivities are estimated from experimental FTIR data (after compensating for the dynamics of the gas sampling system) and compared to nominal values provided by the manufacturer. The ANR perturbation method and the use of different input excitations are then discussed within an analytical framework, and applied to experimental data from a large diesel engine.
Technical Paper

Correlation of Cylinder Head Gasket Sealing Analysis Results between Gasket Element and 3D Continuum Element

2020-03-10
2020-01-0049
A head gasket is a component that sits between the engine block/liner and cylinder head(s) in an internal combustion engine. Its purpose is to seal high pressure combustion gasses in the cylinders and to seal coolant and engine oil. It is the most critical sealing application in an engine. As a general practice, the load deflection(L/D) characteristic is generated by the gasket manufacturer for edge molded or composite gasket types. However, in the case of a solid-sheet metallic gasket, where the gasket is expected to undergo localized yielding to provide adequate conformance and sealing, usually supplier may not be able to provide the required L/D curve due to difficulties to experimentally separate the large loads and small displacements from the elastic loads and deflections of the experimental apparatus. In absence of L/D curve, the typical analysis approach is to model gasket as 3D continuum elements available in ansys by considering nonlinear material and frictional contacts.
Technical Paper

Understanding the Kalman/Vold-Kalman Order Tracking Filters' Formulation and Behavior

2007-05-15
2007-01-2221
The Kalman and Vold-Kalman order tracking filters have been implemented in commercial software since the early 90's. There are several mathematical formulations of filters that have been implemented by different software vendors. However, there have not been any papers that have been published which sufficiently explain the math behind these filters and discuss the actual implementations of the filters in software. In addition, upon generating the equations represented by these filters, solving the equations for datasets in excess of several hundred thousand datapoints is not trivial and has not been discussed in the literature. The papers which have attempted to cover these topics are generally vague and overly mathematically eloquent but not easily understandable by a practicing engineer.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Development of a New 13L Heavy-Duty Diesel Engine Using Analysis-Led Design

2008-06-23
2008-01-1515
The paper covers the design and development of a new 13L heavy-duty diesel engine intended primarily for heavy truck applications in China. It provides information on the specific characteristics of the engine that make it particularly suitable for operation in China, and describes in detail some of the design techniques that were used. To meet these exacting requirements, extensive use was made of Analysis-Led Design, which allows components, sub-systems and the entire engine, aftertreatment and vehicle system to be modeled before designs are taken to prototype hardware. This enables a level of system and sub-system optimization not previously available. The paper describes the emissions strategy for China, and the physical design strategy for the new engine, and provides some engine performance robustness details. The engine architecture is discussed and the paper details the analysis of the major components - cylinder block, head, head seal, power cylinder and bearings.
Technical Paper

Evaluation of Injector Location and Nozzle Design in a Direct-Injection Hydrogen Research Engine

2008-06-23
2008-01-1785
The favorable physical properties of hydrogen (H2) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs. For this study the research engine was equipped with a specially designed cylinder head that allows accommodating a hydrogen injector in a side location between the intake valves as well as in the center location adjacent to the spark plug.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Determination of Source Contribution in Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2228
As noise concerns for snowmobiles become of greater interest for governing bodies, standards such as SAE J192 are implemented for regulation. Specific to this pass-by noise standard, and unlike many other pass-by tests, multiple non-standardized test surfaces are allowed to be used. Manufacturers must understand how the machines behave during these tests to know how to best improve the measured noise levels. Data is presented that identifies the contributions of different sources for different snowmobiles on various test surface conditions. Adaptive resampling for Doppler removal, frequency response functions and order tracking methods are implemented in order to best understand what components affect the overall measurement during the pass-by noise test.
Technical Paper

Momentum Coupling by Means of Lagrange Polynomials in the CFD Simulation of High-Velocity Dense Sprays

2004-03-08
2004-01-0535
The discrete droplet model is widely used to describe two-phase flows such as high-velocity dense sprays. The interaction between the liquid and the gas phase is modeled via appropriate source terms in the gas phase equations. This approach can lead to a strong dependence of the liquid-gas coupling on the spatial resolution of the gas phase. The liquid-gas coupling requires the computation of source terms using the gas phase properties, and, subsequently, these sources are then distributed onto the gas phase mesh. In this study, a Lagrange polynomial interpolation method has been developed to evaluate the source terms and also to distribute these source terms onto the gas mesh. The focus of this investigation has been on the momentum exchange between the two phases. The Lagrange polynomial interpolation and source term distribution methods are evaluated for non-evaporating sprays using KIVA3 as a modeling platform.
Technical Paper

Simulation of Non-Evaporating Diesel Sprays and Verification with Experimental Data

2002-03-04
2002-01-0946
Non-evaporating diesel sprays have been simulated utilizing the ETAB and the WAVE atomization and breakup models and have been compared with experimental data. The experimental penetrations and widths were determined from back-lit spray images and the droplet sizes have been measured by means of a Malvern particle sizer. The model evaluation criteria include the spray penetration, the spray width and the local droplet size. The comparisons have been performed for variations of the injection pressure, the gas density and the fuel viscosity. The fuel nozzle exit velocities used in the simulations have been computed with a special code that considers the effect of in-nozzle cavitation. The simulations showed good overall agreement with experimental data. However, the capabilities of the models to predict the droplet size for different fuels could be improved.
Technical Paper

Carbureted SI Engine Air Flow Measurements

2016-04-05
2016-01-1082
Measurement of internal combustion engine air flow is challenging due to the required modification of the intake system and subsequent change in the air flow pattern. In this paper, various surge tank volumes were investigated to improve the accuracy of measuring air flow rate into a 674-cm3, four-stroke, liquid-cooled, internal combustion engine. According to the experimental results, when the venturi meter is used to measure the intake air flow rate, an air surge tank is required to be installed downstream of the venturi to smoothen the air flow. Moreover, test results revealed that increasing air surge tank volume beyond a limit could have a negative effect on the engine performance parameters especially in carbureted engines where controlling AFR is difficult. Although the air flow rate into the engine changed with increasing tank volume, the air-fuel ratio was leaner for smaller tank volumes.
Technical Paper

Future Challenges for Engine Manufacturers in View of Future Emissions Legislation

2017-05-10
2017-01-1923
Countries around the world are expected to continue to adopt more stringent emissions standards for heavy-duty markets for both oxides of nitrogen (NOx) and greenhouse gases (GHG). While there is uncertainty about the timing and extent of these regulations, it is clear that significant reductions will be required to address urban air pollution and climate change concerns. The rate and pace of technology evolution and how it will affect the energy pathways for commercial transportation and industrial use are dependent on multiple variables such as national energy and environmental policies and public-private partnerships. Although it adds complexity, the engine system has great potential to evolve as it continues to be highly integrated into the super system for which it is producing power. This paper examines the potential opportunities and challenges for engine manufacturers to continue to be the supplier of power to vehicles and equipment of the future.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Technical Paper

Gear Whine Noise Due to Deformation- A Case Study

2017-03-28
2017-01-1122
Vehicle noise has reduced over the years due to the customer demand for quieter vehicles. As the background noises such as combustion noise, pumping noise, etc. have reduced, mechanical noises such as gear noise have become prominent and a major cause of customer complaints. Engine timing gear train uses gears for transferring torque to cam and accessory gears. As engines have become quieter by efforts to reduce the combustion noise, as well as, by moving away from mechanical fuel pumps to common rail fuel pumps, the gear train noise has come under increased scrutiny. Gear whine could be a result of multiple factors. Gear profile distortion is one of the factors. Gear torque variation also has a significant effect on gear whine. Operation of the accessory drives such as hydraulic pumps under variable loads and speeds, is one of the major challenges for resolving a gear whine issue in the engine gear train.
Technical Paper

Diesel Engines Gear Whine: Production Plant Perspective

2017-06-05
2017-01-1809
Engine noise is one of the significant aspects of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues, which is considered objectionable and impacts the customer’s perception of the product quality. Gear whine could result due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. This includes quick overview of the measurement process, test cell environment, noise acceptance criteria considerations. A gear whine case study is presented based on the data collected in the test cell at the engine plant. Gear whine data acquired on current product and next generation of prototype engines is analyzed and presented. This paper concludes by highlighting the lessons learned from the case study.
X