Refine Your Search



Search Results


Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. Presenter Thomas Bardelang, Daimler AG
Technical Paper

Using Simulation to Verify Diagnosis Algorithms of Electronic Systems

In modern vehicles the architecture of electronics is growing more and more complex because both the number of electronic functions – e.g. implemented as software modules – as well as the level of networking between electronic control units (ECUs) is steadily increasing. This complexity leads to greater propagation of failure symptoms, and diagnosing the causes of failure becomes a new challenge. Diagnostics aims at detecting failures such as defect sensors or faulty communication messages. It is subdivided into diagnosis algorithms on an ECU and algorithms running offboard, e.g. on a diagnostic tester. These algorithms have to complement each other in the best possible way. While in the past the diagnosis algorithm was developed late in the development process, nowadays there are efforts to start the development of such algorithms earlier – at least in parallel to developing a new feature itself. This would allow developers to verify the diagnosis algorithms in early design stages.
Technical Paper

Utilizing Automated Report Generation and Data Acquisition Tools to Guide Fuel Cell Vehicle Fleet Operations

Daimler is an industry leader in the development and deployment of fuel cell vehicles. With more than 100 fuel cell vehicles being driven worldwide at locations including the U.S., Singapore, Japan, Europe, China, and Australia, Daimler currently operates the world's largest fuel cell vehicle fleet. Each fuel cell vehicle is equipped with a powerful telematics system that records a diverse set of vehicle operation and fuel cell specific data for development purposes. Through innovative analysis methods Daimler is gaining unique insight into the technical, environmental, societal, and logistic influences impacting the future of fuel cell vehicle technology.
Journal Article

Fire Fighting of Li-Ion Traction Batteries

The number of full electric and hybrid electric vehicles is rapidly growing [1][2][3]. The new technologies accompanying this trend are increasingly becoming a focal point of interest for rescue services. There is much uncertainty about the right techniques to free trapped occupants after an accident. The same applies to vehicle fires. Can car fires involving vehicles with a lithium ion traction battery be handled in the same way as conventional vehicle fires? Is water the right extinguishing agent? Is there a risk of explosion? There are many unanswered questions surrounding the topic of electric vehicle safety. The lack of information is a breeding ground for rumours, misinformation and superficial knowledge. Discussions on various internet platforms further this trend. Tests were conducted on three lithium ion traction batteries, which were fuel-fired until burning on their own. The batteries were then extinguished with water, a surfactant and a gelling agent.
Technical Paper

Low-speed Boom Noise - Escalating Relevance According to CO2- Targets and High Torque Engines

The increasing shift of drive operation towards efficient engine operation points at very low engine speeds demands a concerted design and tuning of engine, drive-train, assembly attachment and body to avoid annoying low speed boom noise. An additional challenge in this area of conflict is the increasing torque of modern engines at low engine speeds. As an example for a standard passenger car, the modes of operation, which may lead to low speed boom noise, are described. Setting levers along the complete chain of effect are characterised - from cylinder pressure up to the radiating surfaces of the interior. To achieve challenging NVH-targets the application of nonlinear simulation systems is indispensable, in particular in the concept phase of a vehicle. The use of multi-body simulation is presented for a concentrated NVH-optimisation of powertrain and rear axle vibration behaviour to reduce low-speed boom noise. On entire vehicle level hybrid simulation models are useful.
Technical Paper

Development of Universal Brake Test Data Exchange Format and Evaluation Standard

Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
Technical Paper

Development of Energy Management Strategies and Analysis with Standard Drive Cycles for Fuel Cell Electric Vehicles

In order to reduce fuel consumption in Fuel Cell Electric Vehicles, effective distribution of power demand between Fuel Cell and Battery is required. Energy management strategies can improve fuel economy by meeting power demand efficiently. This paper explains development of various energy management strategies for Fuel Cell Electric Vehicle with Lithium Ion Battery. Drive cycles used for optimization and analysis of the strategies are New European Drive cycles (NEDC), Japanese Drive cycles (JAP1015), City Drive cycles, Highway Drive cycles (FHDS) and Federal Urban Drive cycles (FUDS). All Fuel consumption and ageing calculations are done using backward model implemented in MATLAB/SIMULINK.
Technical Paper

Standardization of Wiring Harness Data Formats between Truck OEMs and Suppliers

The continuously integration of electrics and electronics (EE) in the last decades is one of the main key drivers for innovation and business success of the Automotive OEMs. This is also applicable for truck manufacturers. On the other side factors like the rising vehicle complexity, number of variants and the warranty costs for EE issues are increasing the pressure on the engineering teams responsible for the mechatronic systems. To address these issues one of the key activities in the European market (focus on Germany) during the last decade was to introduce industry-wide standards for the data transfer of wiring harness data between OEM and harness supplier. In this paper the benefits and technical background of using the standards KBL and KOMP formats within the MB-Trucks brand will be presented. Moreover the role of the Information Technology (IT) will be explained in detail.
Technical Paper

Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. In addition to a multi-stage test process focusing on the functions of the driver assistance systems (software), the “electrical” aspects (hardware) also form part of holistic maturity level validation. The test process is supported by state-of-the-art, high-performance tools (e.g. automatable component test benches and overall vehicle HiL systems) which, in particular, allow quick and accurate configuration in line with different vehicle variants.
Technical Paper

Development of a LIF-Imaging System for Simultaneous High-Speed Visualization of Liquid Fuel and Oil Films in an Optically Accessible DISI Engine

Downsizing and direct injection in modern DISI engines can lead to fuel impinging on the cylinder walls. The interaction of liquid fuel and engine oil due to fuel impinging on the cylinder wall causes problems in both lubrication and combustion. To analyze this issue with temporal and spatial resolution, we developed a laser-induced fluorescence (LIF) system for simultaneous kHz-rate imaging of fuel and oil films on the cylinder wall. Engine oil was doped with traces of the laser dye pyrromethene 567, which fluoresces red after excitation by 532 nm laser radiation. Simultaneously, the liquid fuel was visualized by UV fluorescence of an aromatic “tracer” in a non-fluorescent surrogate fuel excited at 266 nm. Two combinations of fuel and tracer were investigated, iso-octane and toluene as well as a multi-component surrogate and anisole. The fluorescence from oil and fuel was spectrally separated and detected by two cameras.
Technical Paper

The Truck of the Future: Autonomous and Connected Driving at Daimler Trucks

Due to the continuous increasing highway transport and the decreasing investments into infrastructure a better usage of the installed infrastructure is indispensable. Therefore the operation and interoperation of assistance and telematics systems become more and more necessary. Regarding these facts Highway Pilot was developed at Daimler Trucks. The Highway Pilot System moves the truck highly automated and independent from other road users within the allowed speed range and the required security distance. Daimler Trucks owns diverse permissions in Germany and the USA for testing these technologies on public roads. Next generation is the Highway Pilot Connect System that connects three highly automated driving trucks. The connection is established via Vehicle-to-Vehicle communication (V2V).
Technical Paper

Using Timing Analysis for Evaluating Communication Behavior and Network Topologies in an Early Design Phase of Automotive Electric/Electronic Architectures

The increasing functionality and complexity of future electric/electronic architectures requires efficient methods and tools to support design decisions, which are taken in early development phases 6. For the past four years, a holistic approach for architecture development has been established at Mercedes-Benz Cars R&D department. At its core is a seamless design flow, including the conception, the analysis and the documentation for electric/electronic architectures. One of the actual challenges in the design of electric/electronic architectures concerns communication behavior and network topologies. The increasing data exchange between the ECUs creates high requirements for the networks. With the introduction of FlexRay 21 and Ethernet the automotive network architecture become a lot more heterogeneous. Especially gateways must fulfill many new requirements to handle the strict periodic schedule of FlexRay and the partly event-triggered communication on CAN-busses 23.
Technical Paper

Bluetec Emission Control System for the US Tier 2 Bin 5 Legislation

While the market share for diesel engines for LD vehicles in Europe has grown continuously in the past years, the market share in North America is still negligible. Until now, it has been possible to fulfill the limits for nitrogen oxides (NOx) both in Europe and in North America by engine measures alone, without using an active NOx aftertreatment system. With the introduction of Tier II Bin 8 and Tier II Bin 5 emissions legislation in the US in 2007, most new diesel applications will now require NOx aftertreatment. One of the possible technologies for the reduction of nitrogen oxides in lean exhaust gas is the NOx storage catalyst which has become the generally-accepted choice for engines with gasoline direct injection systems and which is also utilized in the current diesel Bluetec I systems from Daimler. For heavier applications urea-SCR is the preferred technology to fulfill NOx legislation limits.
Technical Paper

Standards for Electric/Electronic Components and Architectures

To fulfil the increasing requirements of electric/electronic architectures in automotive environments new concepts for future Electronic Control Units (ECU) are needed. Novel architectures offer much higher potential in terms of performance compared to higher clock rates in standard microcontroller devices. The following contribution discusses the performance benefits of new concepts as well as advantages in early development phases. We focus on two systems: A central body controller and a gateway system. Both are realized on reconfigurable hardware. In comparison to microcontrollers the FPGA technology offers the opportunity of task parallelization and partial dynamically reconfiguration. These novel architectures demand new tool flows and standards which will be also addressed in this paper.
Journal Article

Tire Mark Analysis of a Modern Passenger Vehicle with Respect to Tire Variation, Tire Pressure and Chassis Control Systems

Tire mark analysis is an important factor in accident reconstruction. A precise determination of pre- and postcrash speeds as well as longitudinal and lateral accelerations from tire marks contributes significantly to a reliable accident reconstruction. Continuous advancements in tire and vehicle technology – in particular with respect to modern control systems such as anti-lock braking systems (ABS) – raises the question what role tire marks play in accident reconstruction today. Moreover, this accompanies the question to what extent potential interventions by vehicle control systems such as the electronic stability program (ESP®) resp. the electronic stability control (ESC) can be identified in a tire mark. The widespread use of these systems today makes them increasingly important in accident reconstruction.
Journal Article

Numerical Simulation of DOC+DPF+SCR systems:DOC Influence on SCR Performance

A numerical model for a diesel oxidation catalyst (DOC) is presented. It is based on a spatially 1D, physical and chemically based modeling of the relevant processes within the catalytic monolith. A global reaction kinetic approach has been chosen to describe the chemical reactions. Water condensation and evaporation was also considered, in order to predict the cold start behavior. Reaction kinetic parameters have been evaluated from a series of laboratory experiments. A correlation between the kinetic parameters and the noble metal loading was developed. The model was used in combination with a SCR-Model to study the influence of changes of noble metal loading and DOC volume on the overall transient NOx performance of a DOC+DPF+SCR system.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Numerical Simulation of the Flow through an Alternator inside an Engine Compartment of a Passenger Car

In this study the numerical simulation of the flow through an alternator inside an engine compartment of a passenger car is investigated. Specifically the interaction of the flow through the alternator with the flow through the engine compartment is explored in detail. The results are compared with a corresponding numerical simulation of an alternator in a surrounding of a test facility and with a numerical simulation of the flow through an engine compartment without taking into account the internal flow through the alternator. Finally the air temperature near the alternator and also the temperature of some components inside the alternator are compared with experimental values measured during a typical load case used for the thermal protection of the passenger car.
Journal Article

On Road Durability and Performance Test of Diesel Particulate Filter with BS III and BS IV Fuel for Indian Market

The future emission regulation (BS V) in India is expected to create new challenges to meet the particulate matter (PM) limit for diesel cars. The upcoming emission norms will bring down the limit of PM by 80 % when compared to BS IV emission norms. The diesel particulate filter (DPF) is one of the promising technologies to achieve this emission target. The implementation of DPF system into Indian market poses challenges against fuel quality, driving cycles and warranty. Hence, it is necessary to do a detailed on-road evaluation of the DPF system with commercially available fuel under country specific drive cycles. Therefore, we conducted full vehicle durability testing with DPF system which is available in the European market to evaluate its robustness and reliability with BS III fuel (≤350ppm sulfur) & BS IV (≤50ppm sulfur) fuel under real Indian driving conditions.
Journal Article

Durability Simulation with Chassis Control Systems: Model Depth for a Handling Maneuver

This paper makes a contribution toward a more efficient chassis durability process for the development of passenger cars, in which the simulation of relevant load data is a time-consuming part. This is especially due to the full vehicle model complexity which is usually determined by the demands of rough road simulations. However, for the load calculation on a racetrack, time saving model approaches that are more simplified might be sufficient. Our investigation comprises two levels of vehicle model complexity: one with all chassis parts modeled in a multibody system environment and one characteristic curve based model in an internal simulation environment. Both approaches consider an original chassis control system as a Software-in-the-Loop model. By the evaluation of real-world experiments the main influence factors in terms of durability are demonstrated. With the help of those highly sensitive durability criteria the measurement and simulation results are then compared.