Refine Your Search




Search Results


Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. Presenter Thomas Bardelang, Daimler AG
Technical Paper

Virtual Transfer Path Analysis at Daimler Trucks

As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
Technical Paper

Flow Maldistribution Effects on DPF Performance

This paper focuses on some of the DPF system design issues where 3-dimensional modeling is necessary. The study is based on an existing 3-dimensional DPF model (axitrap) which is coupled to a commercial CFD code (Star-CD, CD-Adapco). The main focus is the effect of the inlet pipe geometry on soot distribution in the filter during loading and regeneration mode. The results show that due to the self-balancing effect, the resulting soot distribution in the filter under typical loading modes with low flow rates is quite uniform. With the assumption of adiabatic inlet pipe, the effect of non-symmetric inlet pipe is also negligible even during regeneration. However, under the realistic assumption of a non-adiabatic inlet pipe, the effect of inlet pipe geometry becomes very significant. Especially, for the case of a bent-shaped inlet pipe, the risk of impartial regeneration of the filter increases significantly.
Technical Paper

Using Simulation to Verify Diagnosis Algorithms of Electronic Systems

In modern vehicles the architecture of electronics is growing more and more complex because both the number of electronic functions – e.g. implemented as software modules – as well as the level of networking between electronic control units (ECUs) is steadily increasing. This complexity leads to greater propagation of failure symptoms, and diagnosing the causes of failure becomes a new challenge. Diagnostics aims at detecting failures such as defect sensors or faulty communication messages. It is subdivided into diagnosis algorithms on an ECU and algorithms running offboard, e.g. on a diagnostic tester. These algorithms have to complement each other in the best possible way. While in the past the diagnosis algorithm was developed late in the development process, nowadays there are efforts to start the development of such algorithms earlier – at least in parallel to developing a new feature itself. This would allow developers to verify the diagnosis algorithms in early design stages.
Technical Paper

Stoichiometric Natural Gas Combustion in a Single Cylinder SI Engine and Impact of Charge Dilution by Means of EGR

In this paper experimental results of a medium duty single cylinder research engine with spark ignition are presented. The engine was operated with stoichiometric natural gas combustion and additional charge dilution by means of external and cooled exhaust gas recirculation (EGR). The first part of this work considers the benefits of cooled EGR on thermo-mechanical stress of the engine including exhaust gas temperature, cylinder head temperature, and knock behaviour. This is followed by the analysis of the influence of cooled EGR on the heat release rate. In this context the impact of fuel gas composition is also under investigation. The influence of increasing EGR on fuel efficiency, which is caused by a changed combustion process due to higher fractions of inert gases, is shown in this section. By application of different pistons a relationship between the piston bowl geometry and the flame propagation has been demonstrated.
Technical Paper

Influence of Fuel Composition and Combustion Process on Thermodynamic Parameters of SI Engines

In the field of heavy-duty applications almost all engines apply the compression ignition principle, spark ignition is used only in the niche of CNG engines. The main reason for this is the high efficiency advantage of diesel engines over SI engines. Beside this drawback SI engines have some favorable properties like lower weight, simple exhaust gas aftertreatment in case of stoichiometric operation, high robustness, simple packaging and lower costs. The main objective of this fundamental research was to evaluate the limits of a SI engine for heavy-duty applications. Considering heavy-duty SI engines fuel consumption under full load conditions has a high impact on CO₂ emissions. Therefore, downsizing is not a promising approach to improve fuel consumption and consequently the focus of this work lies on the enhancement of thermal efficiency in the complete engine map, intensively considering knocking issues.
Technical Paper

Low-speed Boom Noise - Escalating Relevance According to CO2- Targets and High Torque Engines

The increasing shift of drive operation towards efficient engine operation points at very low engine speeds demands a concerted design and tuning of engine, drive-train, assembly attachment and body to avoid annoying low speed boom noise. An additional challenge in this area of conflict is the increasing torque of modern engines at low engine speeds. As an example for a standard passenger car, the modes of operation, which may lead to low speed boom noise, are described. Setting levers along the complete chain of effect are characterised - from cylinder pressure up to the radiating surfaces of the interior. To achieve challenging NVH-targets the application of nonlinear simulation systems is indispensable, in particular in the concept phase of a vehicle. The use of multi-body simulation is presented for a concentrated NVH-optimisation of powertrain and rear axle vibration behaviour to reduce low-speed boom noise. On entire vehicle level hybrid simulation models are useful.
Technical Paper

Development of Universal Brake Test Data Exchange Format and Evaluation Standard

Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
Technical Paper

Standardization of Wiring Harness Data Formats between Truck OEMs and Suppliers

The continuously integration of electrics and electronics (EE) in the last decades is one of the main key drivers for innovation and business success of the Automotive OEMs. This is also applicable for truck manufacturers. On the other side factors like the rising vehicle complexity, number of variants and the warranty costs for EE issues are increasing the pressure on the engineering teams responsible for the mechatronic systems. To address these issues one of the key activities in the European market (focus on Germany) during the last decade was to introduce industry-wide standards for the data transfer of wiring harness data between OEM and harness supplier. In this paper the benefits and technical background of using the standards KBL and KOMP formats within the MB-Trucks brand will be presented. Moreover the role of the Information Technology (IT) will be explained in detail.
Technical Paper

Retrospective on Cubic Equation of State for R134a Refrigerant Used in Automotive Application

The need for a consistent and reliable calculation of thermodynamic property of refrigerants has been a topic of research since the past decade. This paper reports a study of various cubic equations of state for a refrigerant being used in automotive air-conditioning applications. The thermodynamic property of refrigerant 1,1,1,2 tetrafluoroethane (commercially known as R134a) is estimated for this purpose. A comparative analysis is made on three sets of equations of state. They are Redlich Kwong equation (RK), Peng Robinson equation (PR) and Patel Teja equation. It is found that the Patel-Teja and Peng-Robinson equations are accurate in the operating region of automotive air-conditioning system. Using these literature based equations and Maxwell correlations, thermodynamic models are developed. They estimate thermodynamic properties of saturated liquid/vapor, sub-cooled liquid and superheated vapor phases.
Technical Paper

Implementation of an Open-Loop Controller to Design the Longitudinal Vehicle Dynamics in Passenger Cars

In order to offer a wide range of driving experiences to their customers, original equipment manufacturers implement different driving programs. The driver is capable of manually switching between these programs which alter drivability parameters in the engine control unit. As a result, acceleration forces and gradients are modified, changing the perceived driving experience. Nowadays, drivability is calibrated iteratively through road testing. Hence, the resulting set of parameters incorporated within the engine control unit is strongly dependent on the individual sentiments and decisions of the test engineers. It is shown, that implementing a set of objective criteria offers a way to reduce the influences of personal preferences and sentiments in the drivability calibration process. In combination with the expertise of the test engineers, the desired vehicle behavior can be formalized into a transient set point sequence to give final shape to the acceleration behavior.
Technical Paper

Investigation of the Disc Deflection Behavior of Shim Valves in Vehicle Shock Absorbers

Todays tuning of hydraulic vehicle shock absorbers is mainly an empirical iterative process performed in time-consuming and expensive ride tests, whereas the majority of damper simulation models used for investigating vehicle ride behavior is based on an abstract parameterization. For the manufacturing of automotive dampers, however, the valve code is essential. Minor changes in the valve code describing the shim stack in the hydraulic valves may have a noticeable impact on the damper characteristics, while the physical effects are still not sufficiently understood. Therefore, the paper presents a detailed physics-based structural model to investigate the pressure-deflection behavior of shim stacks and the influence of specific discs in the stack. The model includes a variety of effects like friction and preload, and is capable to predict the damper characteristics.
Technical Paper

The Truck of the Future: Autonomous and Connected Driving at Daimler Trucks

Due to the continuous increasing highway transport and the decreasing investments into infrastructure a better usage of the installed infrastructure is indispensable. Therefore the operation and interoperation of assistance and telematics systems become more and more necessary. Regarding these facts Highway Pilot was developed at Daimler Trucks. The Highway Pilot System moves the truck highly automated and independent from other road users within the allowed speed range and the required security distance. Daimler Trucks owns diverse permissions in Germany and the USA for testing these technologies on public roads. Next generation is the Highway Pilot Connect System that connects three highly automated driving trucks. The connection is established via Vehicle-to-Vehicle communication (V2V).
Technical Paper

How to Model Real-World Driving Behavior? Probability-Based Driver Model for Energy Analyses

A wide variety of applications such as driver assistant and energy management systems are researched and developed in virtual test environments. The safe testing of the applications in early stages is based on parameterizable and reproducible simulations of different driving scenarios. One possibility is modeling the microscopic driving behavior to simulate the longitudinal vehicle dynamics of individual vehicles. The currently used driver models are characterized by a conflict regarding comprehensibility, accuracy and calibration effort. Due to the importance for further analyses this conflict of interests is addressed by the presentation of a new microscopic driver model in this paper. The proposed driver model stores measured driving behaviors with its statistical distributions in maps. Thereby, the driving task is divided into free flow, braking in front of stops and following vehicles ahead. This makes it possible to display the driving behavior in its entirety.
Journal Article

Tire Mark Analysis of a Modern Passenger Vehicle with Respect to Tire Variation, Tire Pressure and Chassis Control Systems

Tire mark analysis is an important factor in accident reconstruction. A precise determination of pre- and postcrash speeds as well as longitudinal and lateral accelerations from tire marks contributes significantly to a reliable accident reconstruction. Continuous advancements in tire and vehicle technology – in particular with respect to modern control systems such as anti-lock braking systems (ABS) – raises the question what role tire marks play in accident reconstruction today. Moreover, this accompanies the question to what extent potential interventions by vehicle control systems such as the electronic stability program (ESP®) resp. the electronic stability control (ESC) can be identified in a tire mark. The widespread use of these systems today makes them increasingly important in accident reconstruction.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Technical Paper

The Role of Mercedes Benz do Brasil in the Global Production Network of Daimler Trucks - Based on a Nationalization Project

The commercial vehicle division of Daimler AG developed in the last decades a strong production network, driving the company to a large exchange of parts and aggregates, especially between the plants in Europe and South America. In this article the decision taking methodology for new investments inside this production network is described. The industrialization of engine core parts in Brazil was analyzed by the support of an evaluation tool, and considering the major aspects of a new production site and its supply relationships. The results of the evaluation give transparency about the feasibility of different production network configurations, their interdependencies and the impact of the main influencing factors and drove the board of management to a clear decision, as it happened in other projects which used the same methodology.
Journal Article

Numerical Simulation of DOC+DPF+SCR systems:DOC Influence on SCR Performance

A numerical model for a diesel oxidation catalyst (DOC) is presented. It is based on a spatially 1D, physical and chemically based modeling of the relevant processes within the catalytic monolith. A global reaction kinetic approach has been chosen to describe the chemical reactions. Water condensation and evaporation was also considered, in order to predict the cold start behavior. Reaction kinetic parameters have been evaluated from a series of laboratory experiments. A correlation between the kinetic parameters and the noble metal loading was developed. The model was used in combination with a SCR-Model to study the influence of changes of noble metal loading and DOC volume on the overall transient NOx performance of a DOC+DPF+SCR system.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Application and Validation of CAE Methods for Comprehensive Durability Assessment of Leaf Springs with Measurement and Testing

Securing the desired strength and durability characteristics of suspension components is one of the most important topics in the development of commercial vehicles because these components undergo multiaxial variable amplitude loading. Leaf springs are essential for the suspension systems of trucks and they are considered as security relevant components in the product development phase. In order to guide the engineers in the design and testing department, a simulation method is developed as explained by Bakir et al. in a recently published SAE paper [1]. The main aim of the present study is to illustrate the validation of this simulation method for the durability of leaf springs based on the results from testing and measurements. In order to verify this CAE Method, the calculated stresses on the leaf springs are compared with the results of strain gage measurements and the fatigue failures of leaf springs are correlated with the calculated damage values.