Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Challenges in Automotive Electrification and Powertrain Component Development

2011-11-07
An overview of Daimler?s progression to advance powertrain technology in a growth industry shows many different solutions to improvement in transportation. Daimler continues to make breakthroughs in technology development and application building on 125 years of automotive development. Optimization of current powertrains will enable a significant gain in CO2/mi reductions, that dependent on product mix can be augmented with additional technologies. There is however no bypass to some form of electrification, enabling efficiency gains and alternative forms of power supply. Development of hybrid powertrains continues in an established manner and enhanced development of further electrified powertrains are in development. Organizationally and technically, significant skills and adjustments need to continue to be undertaken enabling OEMs and in particular the supply base to develop optimized solutions efficiently. The outlook is bright for novel component development and innovation.
Technical Paper

Bluetec Emission Control System for the US Tier 2 Bin 5 Legislation

2008-04-14
2008-01-1184
While the market share for diesel engines for LD vehicles in Europe has grown continuously in the past years, the market share in North America is still negligible. Until now, it has been possible to fulfill the limits for nitrogen oxides (NOx) both in Europe and in North America by engine measures alone, without using an active NOx aftertreatment system. With the introduction of Tier II Bin 8 and Tier II Bin 5 emissions legislation in the US in 2007, most new diesel applications will now require NOx aftertreatment. One of the possible technologies for the reduction of nitrogen oxides in lean exhaust gas is the NOx storage catalyst which has become the generally-accepted choice for engines with gasoline direct injection systems and which is also utilized in the current diesel Bluetec I systems from Daimler. For heavier applications urea-SCR is the preferred technology to fulfill NOx legislation limits.
Technical Paper

BLUETEC Diesel Technology - Clean, Efficient and Powerful

2008-04-14
2008-01-1182
Diesel engines have a strong contribution to the CO2 reduction in Europe in the past years. To enable these C02 reduction potential to the US market Mercedes Benz developed the BLUETEC technology for light duty diesel engines. The BLUETEC technology contains an optimized diesel engine and combustion system, an aftertreatment system with DOC, DPF and an active SCR catalyst with AdBlue Dosing System and an enhanced ECU functionality and calibration. For fulfilling the world strongest emission limits of the US legislation there have to be solutions developed for the handling of AdBlue under cold climate below -11°C, managing the refilling event, and the onboard diagnostic. To ensure the emission stability over full useful life on high NOx conversions level, intensive testing of the catalyst technology had to be done. In addition there are self learning functionalities for adapting the dosing strategy to ensure the maximum NOx performance.
Technical Paper

New V6-Diesel-Engine for the Daimler Van “Sprinter” Certified to Emission-Regulation NAFTA2007

2008-04-14
2008-01-1194
The new Sprinter targets the USA and Canada markets nationwide to reconfirm Daimlers statement for Diesel engine in vans. Consequentially, the MY2007 Sprinter follows his successful predecessor as again the first - and up to now the only - Diesel vehicle in its class now meeting even the strict EPA07 requirement in California. For the growing market in North America an unique development for the successor for the previous 5-cylinder Diesel Sprinter had been made. The new 3 liter V6 Diesel engine is based on numerous corporate wide versions from Mercedes and Chrysler Passenger cars and SUVs and has its roots also in smaller and larger Mercedes vans. Effective January 2007 the NAFTA04 requirements have been replaced by the NAFTA07 values. Meeting those led to significant changes of the latest Sprinter in European EURO4 version. Both, engine and exhaust hardware as well as the ECU-data had been modified consequentially.
Technical Paper

Sensor for Directly Determining the State of a NOx Storage Catalyst

2008-04-14
2008-01-0447
In order to control NOx reduction with NOx storing lean NOx traps (LNT), a gas sensor downstream of the LNT is presently preferred. It is a disadvantage that no means are available to gauge directly the LNT NOx loading level and the catalyst quality. The presented novel sensor consists of interdigital electrodes that are deposited on a planar substrate. On its reverse side, a temperature sensor is applied. Both sides are covered with the original catalyst coating, allowing detecting directly electrical impedance and temperature of the coating. Such sensors were integrated in different positions of an LNT. It is shown in synthetic exhausts as well as in engine tests that in-situ measurements of the electrical impedance of the LNT coating are appropriate to determine directly the catalyst status. Hence, the local degree of NOx loading as well as the local regeneration status can be measured. Furthermore, sulfur poisoning, desulfurization, and thermal ageing can be directly seen.
Technical Paper

Model-based Optimization of Catalyst Zoning in Diesel Particulate Filters

2008-04-14
2008-01-0445
Catalyzed wall-flow particulate filters are increasingly applied in diesel exhaust after-treatment for multiple purposes, including low-temperature catalytic regeneration, CO and hydrocarbon conversion, as well as exothermic heat generation during forced regeneration. In order to optimize Precious Metals usage, it may be advantageous to apply the catalytic coating non-uniformly in the DPF, a technology referred to as “catalyst zoning”. In order to simulate the behavior of such a filter, one has to consider coupled transport-reaction modeling. In this work, a previously developed model is calibrated versus experimental data obtained with full-scale catalyzed filters on the engine dynamometer. In a next step, the model is validated under a variety of operating conditions using engine experiments with zoned filters. The performance of the zoned catalyst is analyzed by examining the transient temperature and species profiles in the inlet and outlet channels.
Technical Paper

Towards an Aspect Driven Approach for the Analysis, Evaluation and Optimization of Safety Within the Automotive Industry

2010-04-12
2010-01-0208
An approach will be presented how development projects for safety-related and software-intensive automotive systems can be controlled through the application of model-based risk assessment. Therefore specific control measures have to be developed, which represent the degree of fulfilment of several aspects of safety-related developments. The control measures are evaluated through the analysis of risk-reducing aspects, for which the process of identification and specification is described. Thus, a framework for the creation of a probabilistic and aspect-oriented risk-analysis model (AORA) for safety related projects within automotive industries is currently under development. With respect to the upcoming safety standard ISO 26262 the twofold approach focuses on both, the identification and specification of risk-reducing aspects within the development as well as the application of a probabilistic reasoning model.
Technical Paper

Low-speed Boom Noise - Escalating Relevance According to CO2- Targets and High Torque Engines

2012-06-13
2012-01-1547
The increasing shift of drive operation towards efficient engine operation points at very low engine speeds demands a concerted design and tuning of engine, drive-train, assembly attachment and body to avoid annoying low speed boom noise. An additional challenge in this area of conflict is the increasing torque of modern engines at low engine speeds. As an example for a standard passenger car, the modes of operation, which may lead to low speed boom noise, are described. Setting levers along the complete chain of effect are characterised - from cylinder pressure up to the radiating surfaces of the interior. To achieve challenging NVH-targets the application of nonlinear simulation systems is indispensable, in particular in the concept phase of a vehicle. The use of multi-body simulation is presented for a concentrated NVH-optimisation of powertrain and rear axle vibration behaviour to reduce low-speed boom noise. On entire vehicle level hybrid simulation models are useful.
Technical Paper

Influence of Fuel Composition and Combustion Process on Thermodynamic Parameters of SI Engines

2012-09-10
2012-01-1633
In the field of heavy-duty applications almost all engines apply the compression ignition principle, spark ignition is used only in the niche of CNG engines. The main reason for this is the high efficiency advantage of diesel engines over SI engines. Beside this drawback SI engines have some favorable properties like lower weight, simple exhaust gas aftertreatment in case of stoichiometric operation, high robustness, simple packaging and lower costs. The main objective of this fundamental research was to evaluate the limits of a SI engine for heavy-duty applications. Considering heavy-duty SI engines fuel consumption under full load conditions has a high impact on CO₂ emissions. Therefore, downsizing is not a promising approach to improve fuel consumption and consequently the focus of this work lies on the enhancement of thermal efficiency in the complete engine map, intensively considering knocking issues.
Technical Paper

Using Simulation to Verify Diagnosis Algorithms of Electronic Systems

2009-04-20
2009-01-1043
In modern vehicles the architecture of electronics is growing more and more complex because both the number of electronic functions – e.g. implemented as software modules – as well as the level of networking between electronic control units (ECUs) is steadily increasing. This complexity leads to greater propagation of failure symptoms, and diagnosing the causes of failure becomes a new challenge. Diagnostics aims at detecting failures such as defect sensors or faulty communication messages. It is subdivided into diagnosis algorithms on an ECU and algorithms running offboard, e.g. on a diagnostic tester. These algorithms have to complement each other in the best possible way. While in the past the diagnosis algorithm was developed late in the development process, nowadays there are efforts to start the development of such algorithms earlier – at least in parallel to developing a new feature itself. This would allow developers to verify the diagnosis algorithms in early design stages.
Technical Paper

Ash Transport in Diesel Particle Filters

2012-09-10
2012-01-1732
Lubricant oil derived ash deposits still represent a major issue in diesel particulate filter operation in vehicles. In literature various ash deposition patterns are described. The two boundary deposition patterns are (a) wall layer and (b) filling at the back end of the inlet channels. The patterns are often associated with different regeneration methods. Continuous regeneration is supposed to result in a homogeneous ash layer, whereas periodic (active) regeneration is reported to result in back end filling. The current contribution describes the basic mechanisms associated with ash transport phenomena in particle filters. On the basis of (a) frequency of ash exposure to flow (b) ash particle structure re-entrainment and finally (c) axial ash transport the different deposition pattern can be explained. Exposure to flow accomplished by periodical soot removal, either by passive or active regeneration is the first step.
Technical Paper

Challenges for the Next Generation of BlueTEC Emission Technology

2011-04-12
2011-01-0294
Mercedes-Benz BlueTEC passenger cars have been on the cutting edge of clean diesel technology since 2006. These BlueTEC vehicles furthermore passed millions of kilometers in the hands of customers. SCR-equipped passenger cars already meet the most stringent exhaust emissions standards in international markets such as the USA, Europe and Japan. Diesel engines with BlueTEC technology also reduce CO₂ emissions and provide the high torque and performance associated with the diesel engine in addition to keeping exhaust emissions at the lowest possible level. Nowadays the requirements for SCR emission concepts are increasing continuously. In fact the emission legislation is getting stricter with the LEVIII emission standards in 2015. Additionally the requirements and effort for on-board diagnosis are increasing year after year. In combination with ambitious CO₂ targets all these issues constitute the further challenges of BlueTEC SCR emission concepts for worldwide markets.
Technical Paper

Numerical Simulation of the Flow through an Alternator inside an Engine Compartment of a Passenger Car

2009-10-01
2009-01-3068
In this study the numerical simulation of the flow through an alternator inside an engine compartment of a passenger car is investigated. Specifically the interaction of the flow through the alternator with the flow through the engine compartment is explored in detail. The results are compared with a corresponding numerical simulation of an alternator in a surrounding of a test facility and with a numerical simulation of the flow through an engine compartment without taking into account the internal flow through the alternator. Finally the air temperature near the alternator and also the temperature of some components inside the alternator are compared with experimental values measured during a typical load case used for the thermal protection of the passenger car.
Technical Paper

Virtual Transfer Path Analysis at Daimler Trucks

2009-05-19
2009-01-2243
As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
Technical Paper

Flow Maldistribution Effects on DPF Performance

2009-04-20
2009-01-1280
This paper focuses on some of the DPF system design issues where 3-dimensional modeling is necessary. The study is based on an existing 3-dimensional DPF model (axitrap) which is coupled to a commercial CFD code (Star-CD, CD-Adapco). The main focus is the effect of the inlet pipe geometry on soot distribution in the filter during loading and regeneration mode. The results show that due to the self-balancing effect, the resulting soot distribution in the filter under typical loading modes with low flow rates is quite uniform. With the assumption of adiabatic inlet pipe, the effect of non-symmetric inlet pipe is also negligible even during regeneration. However, under the realistic assumption of a non-adiabatic inlet pipe, the effect of inlet pipe geometry becomes very significant. Especially, for the case of a bent-shaped inlet pipe, the risk of impartial regeneration of the filter increases significantly.
Technical Paper

Implementation of an Open-Loop Controller to Design the Longitudinal Vehicle Dynamics in Passenger Cars

2017-03-28
2017-01-1107
In order to offer a wide range of driving experiences to their customers, original equipment manufacturers implement different driving programs. The driver is capable of manually switching between these programs which alter drivability parameters in the engine control unit. As a result, acceleration forces and gradients are modified, changing the perceived driving experience. Nowadays, drivability is calibrated iteratively through road testing. Hence, the resulting set of parameters incorporated within the engine control unit is strongly dependent on the individual sentiments and decisions of the test engineers. It is shown, that implementing a set of objective criteria offers a way to reduce the influences of personal preferences and sentiments in the drivability calibration process. In combination with the expertise of the test engineers, the desired vehicle behavior can be formalized into a transient set point sequence to give final shape to the acceleration behavior.
Technical Paper

Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions

2018-04-03
2018-01-0971
The use of twin-scroll turbocharger turbines has gained popularity in recent years. The main reason is its capability of isolating and preserving pulsating exhaust flow from engine cylinders of adjacent firing order, hence enabling more efficient pulse turbocharging. Asymmetrical twin-scroll turbines have been used to realize high pressure exhaust gas recirculation (EGR) using only one scroll while designing the other scroll for optimal scavenging. This research is based on a production asymmetrical turbocharger turbine designed for a heavy duty truck engine of Daimler AG. Even though there are number of studies on symmetrical twin entry scroll performance, a comprehensive modeling tool for asymmetrical twin-scroll turbines is yet to be found. This is particularly true for a meanline model, which is often used during the turbine preliminary design stage.
Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Investigation of the Disc Deflection Behavior of Shim Valves in Vehicle Shock Absorbers

2018-04-03
2018-01-0701
Todays tuning of hydraulic vehicle shock absorbers is mainly an empirical iterative process performed in time-consuming and expensive ride tests, whereas the majority of damper simulation models used for investigating vehicle ride behavior is based on an abstract parameterization. For the manufacturing of automotive dampers, however, the valve code is essential. Minor changes in the valve code describing the shim stack in the hydraulic valves may have a noticeable impact on the damper characteristics, while the physical effects are still not sufficiently understood. Therefore, the paper presents a detailed physics-based structural model to investigate the pressure-deflection behavior of shim stacks and the influence of specific discs in the stack. The model includes a variety of effects like friction and preload, and is capable to predict the damper characteristics.
Technical Paper

Reduced Model of a Vehicle Cabin for Transient Thermal Simulation

2018-05-30
2018-37-0022
In the proposed work the transient thermal modeling of a vehicle cabin has been performed. Therefore, a reduced model has been developed based on a one-node discretization of the cabin air. The conduction in the solid parts is accounted for by a one-dimensional heat transfer approach, the radiation exchange between the surfaces is based on view factors adopted from a 3D reference and the convective heat transfer from the cabin surfaces to the cabin air is conducted with the help of heat transfer coefficients calculated in a 3D reference simulation. The cabin surface is discretized by planar wall elements, including the outer shell of the cabin and inner elements such as seats. Each wall element is composed of several homogeneous material layers with individual thicknesses. Investigations have been conducted on the temporal and spatial resolution of the layer structure of these wall elements, for the 3D model as well as for the reduced one.
X