Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Video

Challenges in Automotive Electrification and Powertrain Component Development

2011-11-07
An overview of Daimler?s progression to advance powertrain technology in a growth industry shows many different solutions to improvement in transportation. Daimler continues to make breakthroughs in technology development and application building on 125 years of automotive development. Optimization of current powertrains will enable a significant gain in CO2/mi reductions, that dependent on product mix can be augmented with additional technologies. There is however no bypass to some form of electrification, enabling efficiency gains and alternative forms of power supply. Development of hybrid powertrains continues in an established manner and enhanced development of further electrified powertrains are in development. Organizationally and technically, significant skills and adjustments need to continue to be undertaken enabling OEMs and in particular the supply base to develop optimized solutions efficiently. The outlook is bright for novel component development and innovation.
Technical Paper

Virtual Transfer Path Analysis at Daimler Trucks

2009-05-19
2009-01-2243
As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
Technical Paper

Flow Maldistribution Effects on DPF Performance

2009-04-20
2009-01-1280
This paper focuses on some of the DPF system design issues where 3-dimensional modeling is necessary. The study is based on an existing 3-dimensional DPF model (axitrap) which is coupled to a commercial CFD code (Star-CD, CD-Adapco). The main focus is the effect of the inlet pipe geometry on soot distribution in the filter during loading and regeneration mode. The results show that due to the self-balancing effect, the resulting soot distribution in the filter under typical loading modes with low flow rates is quite uniform. With the assumption of adiabatic inlet pipe, the effect of non-symmetric inlet pipe is also negligible even during regeneration. However, under the realistic assumption of a non-adiabatic inlet pipe, the effect of inlet pipe geometry becomes very significant. Especially, for the case of a bent-shaped inlet pipe, the risk of impartial regeneration of the filter increases significantly.
Technical Paper

Using Simulation to Verify Diagnosis Algorithms of Electronic Systems

2009-04-20
2009-01-1043
In modern vehicles the architecture of electronics is growing more and more complex because both the number of electronic functions – e.g. implemented as software modules – as well as the level of networking between electronic control units (ECUs) is steadily increasing. This complexity leads to greater propagation of failure symptoms, and diagnosing the causes of failure becomes a new challenge. Diagnostics aims at detecting failures such as defect sensors or faulty communication messages. It is subdivided into diagnosis algorithms on an ECU and algorithms running offboard, e.g. on a diagnostic tester. These algorithms have to complement each other in the best possible way. While in the past the diagnosis algorithm was developed late in the development process, nowadays there are efforts to start the development of such algorithms earlier – at least in parallel to developing a new feature itself. This would allow developers to verify the diagnosis algorithms in early design stages.
Technical Paper

Embedded Software Tools Enable Hybrid Vehicle Architecture Design and Optimization

2010-10-19
2010-01-2308
This presentation focuses on several examples of partnerships between tool suppliers and embedded software developers in which state-of-the-art tools are used to optimize a variety of electric and hybrid vehicle architectures. Projects with Automotive OEMs, Tier One Suppliers as well as with academic institutions will be described. Due to the growing complexity in multiple electronic control units (“ECUs”) inter-communicating over numerous network bus systems, combined with the challenge of controlling and maintaining charges for electric motors, vehicle development would be impossible without use of increasingly sophisticated tools. Hybrid drive trains are much more complex than conventional ones, they have at least one degree of freedom more.
Technical Paper

Low-speed Boom Noise - Escalating Relevance According to CO2- Targets and High Torque Engines

2012-06-13
2012-01-1547
The increasing shift of drive operation towards efficient engine operation points at very low engine speeds demands a concerted design and tuning of engine, drive-train, assembly attachment and body to avoid annoying low speed boom noise. An additional challenge in this area of conflict is the increasing torque of modern engines at low engine speeds. As an example for a standard passenger car, the modes of operation, which may lead to low speed boom noise, are described. Setting levers along the complete chain of effect are characterised - from cylinder pressure up to the radiating surfaces of the interior. To achieve challenging NVH-targets the application of nonlinear simulation systems is indispensable, in particular in the concept phase of a vehicle. The use of multi-body simulation is presented for a concentrated NVH-optimisation of powertrain and rear axle vibration behaviour to reduce low-speed boom noise. On entire vehicle level hybrid simulation models are useful.
Technical Paper

DSP-Based Automotive Sensor Signal Generation for Hardware-in-the-Loop Simulation

1994-03-01
940185
Hardware-in-the-Loop Simulation is a technology where the actual vehicles, engines or other components are replaced by a real-time simulation in a simulation computer, based on a mathematical model. That simulation reads ECU (Electronic Control Unit) output signals which would normally go to actuators. On the other hand the simulation must output the sensor signals which make the ECU ‘think’ it controls a real system. Generating these signals can be very difficult. Signals may be complex, depend on on-line computed variables, and be required to be output at high timing resolution. This paper describes the problems and presents a solution which employs high-performance Digital Signal Processors (DSP) to generate such signals on-line by Direct-Digital-Synthesis (DDS).
Technical Paper

Development of Universal Brake Test Data Exchange Format and Evaluation Standard

2010-10-10
2010-01-1698
Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
Technical Paper

Towards an Aspect Driven Approach for the Analysis, Evaluation and Optimization of Safety Within the Automotive Industry

2010-04-12
2010-01-0208
An approach will be presented how development projects for safety-related and software-intensive automotive systems can be controlled through the application of model-based risk assessment. Therefore specific control measures have to be developed, which represent the degree of fulfilment of several aspects of safety-related developments. The control measures are evaluated through the analysis of risk-reducing aspects, for which the process of identification and specification is described. Thus, a framework for the creation of a probabilistic and aspect-oriented risk-analysis model (AORA) for safety related projects within automotive industries is currently under development. With respect to the upcoming safety standard ISO 26262 the twofold approach focuses on both, the identification and specification of risk-reducing aspects within the development as well as the application of a probabilistic reasoning model.
Technical Paper

Retrospective on Cubic Equation of State for R134a Refrigerant Used in Automotive Application

2013-01-09
2013-26-0061
The need for a consistent and reliable calculation of thermodynamic property of refrigerants has been a topic of research since the past decade. This paper reports a study of various cubic equations of state for a refrigerant being used in automotive air-conditioning applications. The thermodynamic property of refrigerant 1,1,1,2 tetrafluoroethane (commercially known as R134a) is estimated for this purpose. A comparative analysis is made on three sets of equations of state. They are Redlich Kwong equation (RK), Peng Robinson equation (PR) and Patel Teja equation. It is found that the Patel-Teja and Peng-Robinson equations are accurate in the operating region of automotive air-conditioning system. Using these literature based equations and Maxwell correlations, thermodynamic models are developed. They estimate thermodynamic properties of saturated liquid/vapor, sub-cooled liquid and superheated vapor phases.
Technical Paper

Implementation of an Open-Loop Controller to Design the Longitudinal Vehicle Dynamics in Passenger Cars

2017-03-28
2017-01-1107
In order to offer a wide range of driving experiences to their customers, original equipment manufacturers implement different driving programs. The driver is capable of manually switching between these programs which alter drivability parameters in the engine control unit. As a result, acceleration forces and gradients are modified, changing the perceived driving experience. Nowadays, drivability is calibrated iteratively through road testing. Hence, the resulting set of parameters incorporated within the engine control unit is strongly dependent on the individual sentiments and decisions of the test engineers. It is shown, that implementing a set of objective criteria offers a way to reduce the influences of personal preferences and sentiments in the drivability calibration process. In combination with the expertise of the test engineers, the desired vehicle behavior can be formalized into a transient set point sequence to give final shape to the acceleration behavior.
Technical Paper

Investigation of the Disc Deflection Behavior of Shim Valves in Vehicle Shock Absorbers

2018-04-03
2018-01-0701
Todays tuning of hydraulic vehicle shock absorbers is mainly an empirical iterative process performed in time-consuming and expensive ride tests, whereas the majority of damper simulation models used for investigating vehicle ride behavior is based on an abstract parameterization. For the manufacturing of automotive dampers, however, the valve code is essential. Minor changes in the valve code describing the shim stack in the hydraulic valves may have a noticeable impact on the damper characteristics, while the physical effects are still not sufficiently understood. Therefore, the paper presents a detailed physics-based structural model to investigate the pressure-deflection behavior of shim stacks and the influence of specific discs in the stack. The model includes a variety of effects like friction and preload, and is capable to predict the damper characteristics.
Technical Paper

Development of a LIF-Imaging System for Simultaneous High-Speed Visualization of Liquid Fuel and Oil Films in an Optically Accessible DISI Engine

2018-04-03
2018-01-0634
Downsizing and direct injection in modern DISI engines can lead to fuel impinging on the cylinder walls. The interaction of liquid fuel and engine oil due to fuel impinging on the cylinder wall causes problems in both lubrication and combustion. To analyze this issue with temporal and spatial resolution, we developed a laser-induced fluorescence (LIF) system for simultaneous kHz-rate imaging of fuel and oil films on the cylinder wall. Engine oil was doped with traces of the laser dye pyrromethene 567, which fluoresces red after excitation by 532 nm laser radiation. Simultaneously, the liquid fuel was visualized by UV fluorescence of an aromatic “tracer” in a non-fluorescent surrogate fuel excited at 266 nm. Two combinations of fuel and tracer were investigated, iso-octane and toluene as well as a multi-component surrogate and anisole. The fluorescence from oil and fuel was spectrally separated and detected by two cameras.
Technical Paper

How to Model Real-World Driving Behavior? Probability-Based Driver Model for Energy Analyses

2019-04-02
2019-01-0511
A wide variety of applications such as driver assistant and energy management systems are researched and developed in virtual test environments. The safe testing of the applications in early stages is based on parameterizable and reproducible simulations of different driving scenarios. One possibility is modeling the microscopic driving behavior to simulate the longitudinal vehicle dynamics of individual vehicles. The currently used driver models are characterized by a conflict regarding comprehensibility, accuracy and calibration effort. Due to the importance for further analyses this conflict of interests is addressed by the presentation of a new microscopic driver model in this paper. The proposed driver model stores measured driving behaviors with its statistical distributions in maps. Thereby, the driving task is divided into free flow, braking in front of stops and following vehicles ahead. This makes it possible to display the driving behavior in its entirety.
Technical Paper

Behavior Modeling Tools in an Architecture-Driven Development Process - From Function Models to AUTOSAR

2007-04-16
2007-01-0507
This paper will first introduce and classify the basic principles of architecture-driven software development and will briefly sketch the presumed development process. This background information is then used to explain extensions which enable current behavior modeling and code generation tools to operate as software component generators. The generation of AUTOSAR software components using dSPACE's production code generator TargetLink is described as an example.
Technical Paper

Approach for Parameter Determination for Objective Comfort Evaluation of the Vehicle Vibration Induced by Powertrain

2014-06-30
2014-01-2065
The driving comfort influences the customer purchase decision; hence it is an important aspect for the vehicle development. To better quantify the comfort level and reduce the experiment costs in the development process, the subjective comfort assessment by test drivers is nowadays more and more replaced by the objective comfort evaluation. Hereby the vibration comfort is described by scalar objective characteristic parameters that correlate with the subjective assessments. The correlation analysis requires the assessments and measurements at different vehicle vibration. To determine the objective parameters regarding the powertrain excitations, most experiments in the previous studies were carried out in several test vehicles with different powertrain units.
Technical Paper

Hardware-in-the-Loop Testing of Networked Electronics at Ford

2005-04-11
2005-01-1658
The number of electrical and electronic components in modern vehicles is constantly growing. Increasingly, functionalities are being distributed across several electronic control units (ECUs). While suppliers themselves are responsible for ensuring that individual ECUs function properly, only the OEM can test distributed functions. Moreover, with the volume of testing steadily growing, automated sequences are absolutely essential. To test electronic networks in the vehicle, Ford Europe is using platform-based hardware-in-the-loop simulation with integrated failure insertion. The company is setting up a uniform, project-independent procedure, from standardized test definition to automated test sequences on a virtual vehicle, right through to structured evaluation.
Technical Paper

How to Do Hardware-in-the-Loop Simulation Right

2005-04-11
2005-01-1657
Not only is the number of electronic control units (ECUs) in modern vehicles constantly increasing, the software of the ECUs is also becoming more complex. Both make testing a central task within the development of automotive electronics. Testing ECUs in real vehicles is time-consuming and costly, and comes very late in the automotive development process. It is therefore increasingly being replaced by laboratory tests using hardware-in-the-loop (HIL) simulation. While new software functions are still being developed or optimized, other functions are already undergoing certain tests, mostly on module level but also on system and integration level. To achieve the highest quality, testing must be done as early as possible within the development process. This paper describes the various test phases during the development of automotive electronics (from single function testing to network testing of all the ECUs of a vehicle).
Technical Paper

Advances in Rapid Control Prototyping - Results of a Pilot Project for Engine Control -

2005-04-11
2005-01-1350
The technological development in the field of automotive electronics is proceeding at almost break-neck speed. The functions being developed and integrated into cars are growing in complexity and volume. With the increasing number and variety of sensors and actuators, electronics have to handle a greater amount of data, and the acquisition and generation of I/O signals is also growing in complexity, for example, in engine management applications. Moreover, intelligent and complex algorithms need to be processed in a minimum of time. This all intensifies the need for Rapid Control Prototyping (RCP), a proven method of decisively speeding up the model-based software development process of automotive electronic control units (ECUs) [1],[2]. All these demanding tasks, including connecting sensors and actuators to the RCP system, need to be performed within a standard prototyping environment.
X