Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Stamping and Crush Performance of Dual Phase Steel

2001-10-16
2001-01-3074
Traditionally, high-strength low-alloy (HSLA) steel is used for automotive vehicle weight reduction in the North American automotive industry. Dual phase (DP) high strength steel has gained great attention because it provides a combination of high strength and good formability. The main advantage of DP steel is the high ratio of tensile strength to yield strength, which provides more flexibility in stamping and higher energy absorption in a component crush event. This study compares the performances of DP and HSLA steel grades in stamping processes and component crush events, as shown in a typical automotive unibody inner rail. Simulation results show that DP steel offers more uniform strain distribution, improved formability, and better crush performance than conventional HSLA steel.
Technical Paper

Prediction of Draw Bead Coefficient of Friction Using Surface Temperature

2002-03-04
2002-01-1059
Sheet metal stamping involves a system of complex tribological (friction, lubrication, and wear), heat transfer, and material strain interactions. Accurate coefficient of friction, strain, and lubrication regime data is required to allow proper modeling of the various sheet stamping processes. In addition, non-intrusive means of monitoring the coefficient of friction in production stamping operations would be of assistance for efficiently maintaining proper stamping quality and to indicate when adjustments to the various stamping parameters, including maintenance, would be advantageous. One of the key sub-systems of the sheet metal stamping process is the draw bead. This paper presents an investigation of the tribology of the draw bead using a Draw Bead Simulator (DBS) Machine and automotive zinc-coated sheet steels. The investigation and findings include: 1) A new, non-intrusive method of measuring the surface temperature of the sheet steel as it passes through the draw bead.
Technical Paper

Springback of Sheet Metal Subjected to Multiple Bending-Unbending Cycles

2000-03-06
2000-01-1112
A Draw Bead Simulator (DBS), with modified draw beads, was employed in this study to understand the springback behavior of sheet metal subjected to multiple bending-unbending cycles. The investigations were carried out in both the rolling and the transverse rolling directions on four types of materials: Electro-Galvanized DQ steel, light and heavy gauge Hot-Dip Galvanealed High Strength Steels, and Aluminum alloy AL6111. The sheet geometries, thickness strains, pulling forces and clamping forces were measured and analyzed for the purpose of establishing a benchmark database for numerical predictions of springback. The results indicate that the springback curvature changes dramatically with the die holding force. The conditions at which the springback is minimized was observed and found to depend on the material properties and the sheet thickness. Analysis with an implicit FEM showed that the predicted and the experimental results are in very good agreement.
Technical Paper

A Thermoplastic Approach to a Composite Automotive Body

1999-09-28
1999-01-3222
This paper will provide an overview of the need, requirements, and constraints governing the development and application of polymer composites in automotive body components. It will discuss the efforts underway to lead and support the technology developments required for the cost-effective application of these new materials in mass-produced vehicles. The requirements and constraints of customer-driven, mass-produced, energy-efficient vehicles with uncompromised cost, capacity and performance, drive careful consideration of an injection-molded thermoplastic approach to a composite automotive body. Recent progress with this approach will be reported and some next steps examined.
Technical Paper

Effect of Forming Strain on Fatigue Performance of a Mild Automotive Steel

2001-03-05
2001-01-0083
The effect of forming strains on the fatigue behavior of an automotive mild steel, interstitial free steel, was studied after being prestrained by balanced biaxial stretch and plane strain. In the long life region, higher than 5×105 reversals, prestrain improves fatigue resistance. In the short life region, prestrain reduces fatigue resistance. At even shorter fatigue lives, the detrimental effect of prestrain diminishes. For plane strains, the fatigue behavior is anisotropic. In the direction perpendicular to the major strain, the steel exhibits much better fatigue resistance than in the direction parallel to the major strain.
X