Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Graphical Representation of Road Profile Characteristics

2004-03-08
2004-01-0769
Load data representing severe customer usage is required during the chassis development process. One area of current research is the use of road profiles for predicting chassis loads. The most direct method of predicting these loads is to run dynamic simulations of the vehicle using numerous road profiles as the excitation. This onerous task may be avoided, and a greatly reduced number of simulations would be required, if roads having similar characteristics can be grouped. Currently, road profiles are characterized by their spectral content. It has been noted by several researches, however, that road profiles are generally nonstationary signals that contain significant transient events and are not well described in the spectral domain. The objective of this work, then, is to develop a method by which the characteristics of the road can be captured by describing these constitutive transient events.
Technical Paper

Managing Road Load Data & The Process

2005-04-11
2005-01-0828
Faced with an ever increasing supply of road load data and no reasonable means to keep track of it, Managing Road Load Data and The Process is about one engineer's charge to deliver a solution. This paper summarizes the approach taken by this engineer and his team to produce a system that not only provides a place to store their data, but facilitates the entire data collection, validation and dissemination process. By following the steps outlined in this document, virtually every opportunity for improvement will be identified. That is, the process is thoroughly explored; the wants and needs of the users are identified, and then, as warranted, turned into functional elements of the system. The result is a central repository that is accessible to all and with the capability of significantly reducing cost and timing. The development process presented here is not a difficult one to accomplish, but does require keeping track of a lot of detail. It can therefore be quite time consuming.
Technical Paper

Chassis Dynamometer Simulation of Tire Impact Response

2001-04-30
2001-01-1481
One of the major NVH concerns for automobile manufacturers is the response of a vehicle to the impact of the tire as it encounters a road discontinuity or bump. This paper describes methods for analyzing the impact response of a vehicle to such events. The test vehicle is driven on a dynamometer, on which a bump simulating cleat is mounted. The time histories of the cleat impact response of the vehicle can be classified as a transient and a repeated signal, which should be processed in a special way. This paper describes the related signal processing issues, which include converting the time data into a continous spectrum, determination of the correct scaling factor for the analyzed spectrum, and smoothing out harmonics and fluctuations in the signal. This procedure yields a smooth frequency spectrum with a correctly scaled amplitude, in which the frequency contents can be easily identified.
X