Refine Your Search

Topic

Search Results

Technical Paper

Study of Performance and Emissions Parameters of Single Cylinder Diesel Engine Fuelled with Micro Emulsion of Jatropha Oil and Ethanol

2017-10-08
2017-01-2331
The use of alternative fuel has many advantages and the main ones are its renewability, biodegradability with better quality exhaust gas emission, which do not contribute to raise the level of carbon dioxide in the atmosphere. The use of non-edible vegetables oils as an alternative fuels for diesel engine is accelerated by the energy crisis due to depletion of resources and increase in environmental problems. In Asian countries like India, great need of edible oil as a food so cannot use these oils as alternative fuels for diesel engine. However there are many issues related to the use of vegetable oils in diesel engine that is high viscosity, low calorific value, high self-ignition temperature etc. Jatropha curcas has been promoted in India as a sustainable substitute to diesel fuel. This research prepared micro emulsions of ethanol and Jatropha vegetable oil in different ratio and find out the physico-chemical parameters to compare with mineral diesel oil.
Technical Paper

Potential Utilization of CNG in Stationary HCCI Engine

2013-10-14
2013-01-2508
Internal combustion engines are extensively used in every field of life in today's world. Diesel engines being more efficient are preferred in the industrial and transportation sector in comparison to spark ignition engines for their higher efficiency, versatility and ruggedness. The major emissions of diesel engines are oxides of nitrogen (NOx), particulate matter (PM), carbon dioxide (CO2), carbon monoxide (CO). Among these emissions, oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For reduction of oxides of nitrogen (NOx) and particulate matter simultaneously, the use of Homogeneous Charge Compression Ignition (HCCI) have provided a sustainable solution in the present scenario. Further, the use of CNG in HCCI engine along with pilot diesel injection; the emissions have been decreased drastically. Homogeneous mixing of fuel and air leads to cleaner combustion and lower emissions.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

2013-09-17
2013-01-2170
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Technical Paper

Performance Based Optimization of Intake and Injection Parameters of an Advanced Compressed Air Engine Kit

2017-03-28
2017-01-1291
The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
Technical Paper

Performance Evaluation and Emission Characteristics of Biodiesel-Alcohol-Diesel Blends Fuelled in VCR Engine

2016-10-17
2016-01-2265
The diesel engine has for many decades now assumed a leading role in both the medium and medium-large transport sector due to their high efficiency and ability to produce high torque at low RPM. Furthermore, energy diversification and petroleum independence are also required by each country. In response to this, biodiesel is being considered as a promising solution due to its high calorific value and lubricity conventional petroleum diesel. However, commercial use of biodiesel has been limited because of some drawbacks including corrosivity, instability of fuel properties, higher viscosity, etc. Biodiesel are known for lower CO, HC and PM emissions. But, on the flip side they produce higher NOx emissions. The addition of alcohol to biodiesel diesel blend can help in reducing high NOx produced by the biodiesel while improving some physical fuel properties.
Technical Paper

Enhancement in Performance and Emission Characteristics of Diesel Engine by Adding Alloy Nanoparticle

2016-10-17
2016-01-2249
Enhancement of combustion behavior of conventional liquid fuel using nanoscale materials of different properties is an imaginative and futuristic topic. This experiment is aimed to evaluate the performance and emission characteristics of a diesel engine when lade with nanoparticles of Cu-Zn alloy. The previous work reported the effect of metal/metal oxide or heterogeneous mixture of two or more particles; less work had been taken to analyze the homogeneous mixture of metals. This paper includes fuel properties such as density, kinematic viscosity, calorific value and performance measures like brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and emission analysis of NOX, CO, CO2, HC. For the same solid concentration, nano-fuel is compared with base fuel at different engine loads; and its effect when lade at different concentrations.
Technical Paper

Performance and Emission Analysis of a CI Engine in Dual Mode with CNG and Karanja Oil Methyl Ester

2014-09-30
2014-01-2327
Rapid depletion of fossil fuels is urgently demanding an extensive research work to find out the viable alternative fuel for meeting sustainable energy demand without any environmental impact. In the future, our energy systems will need to be renewable, sustainable, efficient, cost-effective, convenient and safe. Therefore, researchers has shown interest towards alternative fuels like vegetable oils, alcohols, LPG, CNG, Producer gas, biogas in order to substitute conventional fuel i.e. diesel used in compression ignition (CI) engine. However, studies have suggested that trans-esterified vegetable oils retain quite similar physico-chemical properties comparable to diesel. Besides having several advantages, its use is restricted due to higher emissions i.e. NOx, CO, HC and deposits due to improper combustion. Hence, there is a need of cleaner fuel for diesel engines for the forthcoming stringent emissions norms and the fossil depletion.
Technical Paper

Tribological Performance of Lubricating Oil Contaminated with Fine Dust Particles

2014-09-30
2014-01-2334
The economics of operating internal combustion engines in cars, buses and other automotive equipment is heavily affected by friction and wear losses caused by abrasive contaminants. As such, dust is a universal pollutant of lubricating oils. Road dust consists of depositions from vehicular and industrial exhausts, tire and brake wear, dust from paved roads or potholes, and from construction sites. Present research investigates the influence of dust powder of size 5 μm-100 μm as contaminant in SAE 20W-40 lubricant on the relative motion of a plane surface over the other having circular surface in contact. A pin-on-disk setup as per ASTM G99 has been used to conduct the experiments, firstly at increasing rpm keeping constant load of 118 N, and secondly by increasing loads, keeping rpm constant at 1000. The contaminated lubricant has been used to study its influence on friction and wear rate at the interface of pin of 12 mm diameter and disk at track diameter of 98 mm.
Technical Paper

Development of a Dedicated Hydrogen Port Injection Kit for Small Engines

2015-09-29
2015-01-2881
The danger posed by climate change and the striving for securities of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Man's energy requirements are touching astronomical heights. The natural resources of the Earth can no longer cope with it as their rate of consumption far outruns their rate of regeneration. The automotive sector is without a doubt a chief contributor to this mayhem as fossil fuel resources are fast depleting. The harmful emissions from vehicles using these fuels are destroying our forests and contaminating our water bodies and even the air that we breathe. The need of the hour is to look not only for new alternative energy resources but also clean energy resources. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms.
Technical Paper

Study of Performance and Emission Characteristics of Propan-2-ol and Gasoline Fuel Blends in an Unmodified Spark Ignition Engine

2019-04-02
2019-01-0793
In view of the rapid depletion, increasing prices and uneven distribution of conventional petroleum fuels; the interest in the use of alternative fuels has increased exponentially. Fuels such as biodiesel & alcohol have been evaluated both at experimental and commercial scale due to improved emission characteristics as compared to conventional fuels. Alcohols are oxygenated and result in improving the engine performance. As a blend with conventional gasoline, the alcohols enhance the premixed and diffusive combustion phase which improves the combustion efficiency. The present investigation evaluates studies on stability and homogeneity along with physicochemical properties like density, viscosity, calorific value, copper-strip corrosion and solubility at room temperature of Propan-2-ol and gasoline blends. Comprehensive engine trials on unmodified petrol engine fuelled with blends of Propan-2-ol and gasoline blends in the proportions of 5, 10, 15 and 20% by volume have been conducted.
Technical Paper

Experimental Investigations of Metal Oxide Nano-Additives on Working Characteristics of CI Engine

2019-04-02
2019-01-0794
Biodiesel is a potential substitute for diesel and extensive research is carried in India on production and utilization of biodiesel from a variety of edible/non-edible, animal fat and waste oils. However, issues like stability, clogging, increased NOx, and high consumption rate etc. are some of the critical issues which are associated with long-term use of these alternative fuels in a diesel engine. The recent developments in science and technology may have concreted a method to create nano measure vigorous resources that have incredible benefits to micron sized constituents. Nano liquids may be a fresh period of compact-fluid complex constituents comprising of nano sized concrete elements disseminated into a base liquid. The present study investigates the effect of doping metal oxides nanoparticles with waste fish oil-based biodiesel. For the present study, the blends of fuel are prepared by using 30ppm each of titanium dioxide and alumina nanoparticles respectively.
Technical Paper

Effect of Using Exhaust Gas Recirculation (EGR) on the Emission Characteristics of the CI Engine Fuelled by Acetone-Butanol-Ethanol (ABE) Diesel Blends

2019-04-02
2019-01-0748
The power generation, agriculture, and transportation sectors are dominated by diesel engines due to better thermal efficiency and durability. Diesel engines are also a major contributor to the air pollutants such as NOx and particulate matter. Acetone-butanol-ethanol (ABE) is considered a promising alternative fuel as it emits less pollutants compared to conventional fuels. In current work, the ABE used was of the ratio (3:6:1) and four samples were prepared for engine trial ABE (10%90%diesel), ABE (20%80%diesel), ABE (30%70%diesel) and ABE (40%60%diesel). Their physio-chemical properties like kinematic viscosity, density, specific gravity and calorific value were checked and tested on compression ignition engine at different operating parameters. The experimental work was conducted upon Kirloskar 4-stroke single cylinder, vertical, air-cooled 661cc compression ignition engine at different speeds and loads.
Technical Paper

Comparative Study on Performance and Emission Characteristics of Fish Oil Biodiesel and Mahua Oil Biodiesel Blend with Diesel and Diesel Fuel in a Medium Capacity Compression Ignition Employing Urea-SCR with Cu-ZSM5

2014-04-01
2014-01-1499
The present world scenario faces a serious threat from increasing dependence on fossil fuels. This has triggered the awareness to find alternative energy as their sustainable energy sources. Biodiesel as a cleaner renewable fuel may be considered as a good substitution for diesel fuel due to it being used in any compression ignition engine without any modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions. In terms of emissions from biodiesel, the cause of concern continues to be the NOx emissions. Therefore, to compliment the functioning of biodiesels, Urea-SCR over Cu-ZSM5 catalyst is an effective option due to its ability to convert NOx into nitrogen and water. There has been increasing concerns that biodiesel feedstock may compete with food supply in the long term. The recent paper focuses on use of two non-edible oils mahua oil and fish oil (processed from waste produced by fish).
Technical Paper

A Study on Homogeneous Combustion in Porous Medium Internal Combustion Engine: A Review

2017-03-28
2017-01-0788
Rapid depletion in fuel resources owing to the low efficiency of current automobiles has been a major threat to future generations for fuel availability as well as environmental health. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous (NOx and CO) and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These criteria could be improved having a homogeneous combustion process in an engine. Homogeneous mixing of fuel and air in HCCI leads to cleaner combustion and lower emissions. Since peak temperatures are significantly lower than in typical SI engines, NOx levels and soot are reduced to some extent. Because of absence of complete homogeneous combustion but quasi homogeneous combustion present in HCCI, there is still a possibility of further reducing the emissions as well as enhancing the engine performance.
Journal Article

Synthesis of Linseed oil Biodiesel using a Non-Catalytic Supercritical Transesterification Process

2014-04-01
2014-01-1955
Due to high energy demand and limited availability of fossil fuels, the energy necessity becomes a point of apprehension as it results in hike of fuel prices. It is essential to develop renewable energy resources while considering the impact on environment. In the last decade, demand of alternative fuels has increased a lot. Therefore, researchers have already started working on the aim of developing a green fuel to overcome the future energy demand. And as we know that the biodiesel is generally prepared from the non-edible and renewable resources thus, it can be among the competitive alternative future fuels. Besides that, it does not require any prior engine modifications for its usual advantage among other alternative fuels while using it within certain boundaries. However, the process biodiesel production is in itself time consuming which increases the cost of production while decreasing the yield.
Technical Paper

In-Cylinder Combustion and Emission Characteristics of an Agricultural Diesel Engine Fuelled with Blends of Diesel and Oxidatively Stabilized Calophyllum Methyl Ester

2016-02-01
2016-28-0140
In the present experimental investigation, performance, emission and combustion characteristics of a single cylinder diesel engine using diesel-biodiesel blends and antioxidant containing biodiesel test fuels was carried out. The potential suitability of aromatic amine based antioxidants to enhance the oxidation stability of biodiesel on one hand and reduction of tail pipe oxides of nitrogen (NOx) on the other were evaluated. Tertiary Butyl Hydroquinone (TBHQ) was considered as the antioxidant and Calophyllum Inophyllum vegetable oil was taken as the feedstock for biodiesel production. The test fuel samples were neat diesel (D100), 10% and 20% blend of Calophyllum biodiesel with diesel (CB10 and CB20) and 1500 ppm of TBHQ in CB10 and CB20 (CBT10 and CBT20). The results indicated that neat biodiesel blended test fuels (CB10 and CB20) exhibited lower brake thermal efficiency compared to the diesel baseline by a margin of 3% to 10% at full load.
Technical Paper

Development of an Intake Runner of a CI Engine for Performance Enhancement and Emission Reductions Due to Variations in Air Flow Pattern within the Runner

2016-04-05
2016-01-1015
Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
Technical Paper

Low Cost Optimization of Engine Emissions for an Intake Runner Designed for Medium Capacity CI Engine through Correlations between Emission Values and Intake Configurations

2016-04-05
2016-01-1004
The energy crisis coupled with depleting fuel reserves and rising emission levels has encouraged research in the fields of performance enhancement, emission reduction technologies and engineering designs. The present paper aims primarily to offset the problem of high emissions and low efficiencies in low cost CI engines used as temporary power solutions on a large scale. The investigation relates to the low cost optimization of an intake runner having the ability to vary the swirl ratio within the runner. Test runs reveal that NOx and CO2 follow a relatively smaller gradient of rise and fall in their values depending on the configuration; whereas UHC and CO have a rapid changes in values with larger gradients. However, in a relative analysis, no configuration was able to simultaneously reduce all emission parameters and thus, there exists a necessity to find an optimized configuration as a negotiation between the improved and deteriorated parameters.
Technical Paper

Utilization of Blends of Jatropha Oil and N-Butanol in a Naturally Aspirated Compression Ignition Engine

2013-10-14
2013-01-2684
Diesel Engines are widely used in transportation, industrial and agriculture sectors worldwide due to their versatility and ruggedness. However, they also emit harmful emissions detrimental to human health and environment. Apart from environmental degradation, the perturbation in international crude oil prices is also mandating use of renewable fuels. In this context, vegetable oils such as Jatropha Curcas due to their carbon neutral nature and widespread availability, seems to present a promising alternative to the mineral diesel. Straight vegetable oils (SVO) are not recommended for direct diesel engine application due to their higher viscosity, poor volatility etc. and dilution of straight vegetable oil may effectively enable its direct application in unmodified diesel engines. In the present study, Jatropha oil was diluted with n-Butanol to improve the fuel properties of the blend.
Technical Paper

Emission Studies on a VCR Engine Using Stable Diesel Water Emulsion

2013-10-14
2013-01-2665
Internal combustion engines are the backbone of contemporary global transportation. But the major drawbacks associated with them, are the exhaust gases. These include carbon monoxide (CO), unburned hydrocarbons (UBHC), oxides of nitrogen (NOx), odor, particulate matter (PM) etc. Among them the emissions of oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For NOx reduction in recent developing technologies, diesel water emulsion was found the best approach for the existing engines by researchers. In the present study, performance and emission statistics of a diesel engine using diesel water emulsion operating at different compression ratios from 17:1 to 18:1 was performed. Stable Emulsions were prepared with 5%, 10%, 15%, 20% and 25 % (v/v) water concentration with variable agitation speed ranging from 5000-15000 rpm along with two surfactants. Various physico-chemical properties of emulsions were tested for all six samples including diesel.
X