Refine Your Search

Topic

Search Results

Technical Paper

Evaluation of Performance and Emission Characteristics of an Unmodified Naturally Aspirated Compression Ignition Engine on Blends of Diethyl Ether and Diesel

2013-11-27
2013-01-2888
The world today is majorly dependent upon fossil fuels for power generation, of which diesel forms an integral part. Diesel engines, having the highest thermal efficiency of any regular internal or external combustion engine, are widely used in almost all walks of life and cannot be dispensed with in the near future. However, the limited availability of diesel and the adverse effects of diesel engine emissions like nitrogen oxide (NOx) and soot particles raise serious concerns. Hence, their performance and emission improvement continues to be an avenue of great research activity. In this research work, the effects of blending Diethyl Ether with diesel in various proportions (5%, 10%, 15% and 20% by volume) were evaluated on engine performance and emissions of an industrial internal combustion engine.
Technical Paper

Performance and Emission Characteristics of Isobutanol-Diesel Blend in Water Cooled CI Engine Employing EGR with EGR Intercooler

2013-09-08
2013-24-0151
The increasing rate of fossil fuel depletion and large scale debasement of the environment has been a serious concern across the globe. This twin problem of energy crises has caused researchers to look for a variety of solutions in the field of internal combustion engines. In this current scenario the issue of fuel availability has increased the use alternative fuels, especially alcohol derived fuels. Alcohol-diesel blends can be been seen as a prominent fuel for CI engine in the near future. Previous research on the use of alcohol as an alternative fuel in CI engines is restricted to short branch alcohols, such as methanol and ethanol. Despite their comparable combustion properties longer chain alcohols, such as butanol, isobutanol and pentanol have been barely investigated. In the present study performance and emission characteristics of an isobutanol-diesel blend was studied. One of the major problems encountered by isobutanol in CI engines is its low cetane rating.
Technical Paper

Low Cost Optimization of Engine Emissions for an Intake Runner Designed for Medium Capacity CI Engine through Correlations between Emission Values and Intake Configurations

2016-04-05
2016-01-1004
The energy crisis coupled with depleting fuel reserves and rising emission levels has encouraged research in the fields of performance enhancement, emission reduction technologies and engineering designs. The present paper aims primarily to offset the problem of high emissions and low efficiencies in low cost CI engines used as temporary power solutions on a large scale. The investigation relates to the low cost optimization of an intake runner having the ability to vary the swirl ratio within the runner. Test runs reveal that NOx and CO2 follow a relatively smaller gradient of rise and fall in their values depending on the configuration; whereas UHC and CO have a rapid changes in values with larger gradients. However, in a relative analysis, no configuration was able to simultaneously reduce all emission parameters and thus, there exists a necessity to find an optimized configuration as a negotiation between the improved and deteriorated parameters.
Technical Paper

Some Experimental Studies on Use of Biodiesel as an Extender in SI Engine

2016-04-05
2016-01-1269
The present study was carried to explore the potential suitability of biodiesel as an extender of Kerosene in an off road dual fuel (gasoline start, kerosene run) generator set and results were compared with kerosene base line data. The biodiesel was blended with kerosene in two different proportions; 2.5% and 5% by volume. Physico-chemical properties of blends were also found to be comparable with kerosene. Engine tests were performed on three test fuels namely K100 (Kerosene 100%), KB 2.5 (Kerosene 97.5% + Biodiesel 2.5%) and KB5 (Kerosene 95% + Biodiesel 5%). It was found that brake thermal efficiency [BTE] increases up to 3.9% while brake specific energy consumption [BSEC] decreases up to 2.2% with increasing 5% volume fraction of biodiesel in kerosene. The exhaust temperature for blends was lower than kerosene. The test engine emitted reduced Carbon monoxide [CO] emission was 7.4 % less than using neat kerosene as compared to kerosene-biodiesel blends.
Technical Paper

Comparative Study of Emissions and Performance of Hythane Boosted SI Engine Powered by Gasoline-Methanol Blend and Gasoline-Ethanol Blend

2016-04-05
2016-01-1281
The continued reliance on fossil fuel energy resources is not sufficient to cater to the current energy demands. The excessive and continuous use of crude oil is now recognized as unviable due to its depleting supplies and elevating environmental degradation by increased emissions from automobile exhaust. There is an urgent need for a renewable and cleaner source of energy to meet the stringent emission norms. Hythane is a mixture of 20% hydrogen and 80% methane. It has benefits of low capital and operating costs and is a cleaner alternative than crude oil. It significantly reduces tailpipe emissions and is the cheapest way to meet new emission standards that is BS-IV. Hythane produces low carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons (HC) on combustion than crude oil and helps in reduction of greenhouse gases.
Technical Paper

Experimental Analysis of Retarding the Spark Timing in a Hydrogen Enriched Gasoline and Alcohol Blend Powered Spark Ignition Engine

2016-04-05
2016-01-1277
Gasoline has been the major fuel in transportation, its good calorific value and high volatility have made it suitable for use in different injection methods. The drastic increase in use of carbon based fuels has led to increase in harmful emissions, thus resulting in implementation of stricter emissions norms. These harmful emissions include carbon monoxide and NOx. To meet the new norms and reduce the harmful emissions, better techniques have to be implemented to achieve better combustion of gasoline and reduce the amount of carbon monoxide in the exhaust. One such way of doing this is by enriching gasoline with hydrogen. Due to its low activation energy and high calorific value, the high energy released from hydrogen can be used to achieve complete combustion of gasoline fuel. However, there are certain drawbacks to the use of hydrogen in spark ignition engine, knocking and overheating of engine parts being the major problems.
Technical Paper

An Experimental Analysis of Biodiesel Production from Mixture of Neem (Azadirachta indica) Oil and Sesame (Sesamum indicum L.) Oil and its Performance and Emission Testing on a Diesel Engine

2016-04-05
2016-01-1264
Non-edible vegetable oils have a huge potential for biodiesel production and also known as second generation feedstock’s. Biodiesel can be obtained from edible, non-edible, waste cooking oil and from animal fats also. This paper focuses on production of biodiesel obtained from mixture of sesame (Sesamum indicum L.) oil and neem (Azadirachta indica) oil which are easily accessible in India and other parts of world. Neem oil has higher FFA content than sesame oil. Biodiesel production from neem oil requires pretreatment neutralization procedure before alkali catalyzed Trans esterification process also it takes large reaction time to achieve biodiesel of feasible yield. Neem oil which has very high FFA and sesame oil which has low FFA content are mixed and this mixture is Trans esterified with no pre-treatment process using molar ratio of 6:1.Fuel properties of methyl ester were close to diesel fuel and satisfied ASTM 6751 and EN 14214 standards.
Technical Paper

Experimental Studies on Mechanical Properties of Metal Matrix Composites Reinforced with Natural Fibres Ashes

2019-04-02
2019-01-1123
Metal matrix composites have a large range of applications in the automobile industry due to its characteristics and properties. Al-based MMC have aluminum as matrix metal that has properties which are well concerned with the automobile industry. Some of these properties are high strength to weight ratio and lightweight. In this paper we are trying to develop aluminum-based metal matrix composite (MMC) reinforced with natural fibers ashes, we are using fine ashes of Sugarcane (bagasse), Groundnut Shell Ash (GSA), Rice Husk Ash (RHA) and Coconut shell (Jute) ash, different effects are investigated for different percentage of reinforcing material which is being produced by burning in a free atmosphere. Ball milling is used for making fine particle size of different natural fibers ash. Nine samples were made by the stir casting process consisting of Al6063 as base metal and different concentration of reinforcement.
Technical Paper

Effect of Using Exhaust Gas Recirculation (EGR) on the Emission Characteristics of the CI Engine Fuelled by Acetone-Butanol-Ethanol (ABE) Diesel Blends

2019-04-02
2019-01-0748
The power generation, agriculture, and transportation sectors are dominated by diesel engines due to better thermal efficiency and durability. Diesel engines are also a major contributor to the air pollutants such as NOx and particulate matter. Acetone-butanol-ethanol (ABE) is considered a promising alternative fuel as it emits less pollutants compared to conventional fuels. In current work, the ABE used was of the ratio (3:6:1) and four samples were prepared for engine trial ABE (10%90%diesel), ABE (20%80%diesel), ABE (30%70%diesel) and ABE (40%60%diesel). Their physio-chemical properties like kinematic viscosity, density, specific gravity and calorific value were checked and tested on compression ignition engine at different operating parameters. The experimental work was conducted upon Kirloskar 4-stroke single cylinder, vertical, air-cooled 661cc compression ignition engine at different speeds and loads.
Technical Paper

Study of Performance and Emission Characteristics of Propan-2-ol and Gasoline Fuel Blends in an Unmodified Spark Ignition Engine

2019-04-02
2019-01-0793
In view of the rapid depletion, increasing prices and uneven distribution of conventional petroleum fuels; the interest in the use of alternative fuels has increased exponentially. Fuels such as biodiesel & alcohol have been evaluated both at experimental and commercial scale due to improved emission characteristics as compared to conventional fuels. Alcohols are oxygenated and result in improving the engine performance. As a blend with conventional gasoline, the alcohols enhance the premixed and diffusive combustion phase which improves the combustion efficiency. The present investigation evaluates studies on stability and homogeneity along with physicochemical properties like density, viscosity, calorific value, copper-strip corrosion and solubility at room temperature of Propan-2-ol and gasoline blends. Comprehensive engine trials on unmodified petrol engine fuelled with blends of Propan-2-ol and gasoline blends in the proportions of 5, 10, 15 and 20% by volume have been conducted.
Technical Paper

Blending of Higher Alcohols with Vegetable Oil Based Fuels for Use in Compression Ignition Engine

2015-04-14
2015-01-0958
Concerns about long term availability of petroleum based fuels and stringent environmental norms have been a subject for deliberations around the globe. The vegetable oil based fuels and alcohols are very promising alternative fuels for substitution of diesel, reduce exhaust emissions and to improve combustion in diesel engines which is mainly possible due to oxygenated nature of these fuels. Jatropha oil is important non-edible oil in India which is either used in neat or modified form as diesel fuel. Furthermore n-butanol is renewable higher alcohol having properties quite similar to diesel fuel. In the present study, n-butanol was blended in Jatropha Oil (JO) and Jatropha Oil Methyl Ester (JME) on volumetric basis (10 and 20%). The blends were homogeneous and stable and there was no phase separation. The different physicochemical properties of blends were evaluated as per relevant standards.
Technical Paper

Comparative Study of Emissions and Performance of Hydrogen Boosted SI Engine Powered by Gasoline Methanol Blend and Gasoline Ethanol Blend

2015-04-14
2015-01-1677
Increased dependency on fossil fuels has led to its depletion as well as affected the environment adversely. Moreover, increasing crude oil prices is pressurizing vehicle manufacturers to invent new technology so as to increase fuel economy and at the same time to keep emissions under control. Hydrogen has gained popularity not just in terms of being an abundant alternative but also due to being a very clean propellant. In the present investigation, hydrogen boosting has been performed on an SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation. The engine selected for experimental analysis is a single cylinder, air cooled spark ignition engine that has been modified for hydrogen injection in the intake manifold prior to the port with the injection timing being held constant throughout the experiment.
Technical Paper

Development of Fuzzy Based Decision Structure for Automotive Airbag Control Unit

2017-01-10
2017-26-0349
This study is an attempt to develop a decision support and control structure based on fuzzy logic for deployment of automotive airbags. Airbags, though an additional safety feature in vehicles, have proven to be fatal at various instances. Most of these casualties could have been avoided by using seat belts in the intended manner that is, as a primary restraint system. Fatalities can be prevented by induction of smart systems which can sense the presence and differentiate between passengers and conditions prevailing at a particular instant. Fuzzy based decision making has found widespread use due to its ability to accept non-binary or grey data and compute a reliable output. Smart airbags also allow the Airbag Control Unit to control inflation speed depending on instantaneous conditions.
Technical Paper

In-Cylinder Combustion and Emission Characteristics of an Agricultural Diesel Engine Fuelled with Blends of Diesel and Oxidatively Stabilized Calophyllum Methyl Ester

2016-02-01
2016-28-0140
In the present experimental investigation, performance, emission and combustion characteristics of a single cylinder diesel engine using diesel-biodiesel blends and antioxidant containing biodiesel test fuels was carried out. The potential suitability of aromatic amine based antioxidants to enhance the oxidation stability of biodiesel on one hand and reduction of tail pipe oxides of nitrogen (NOx) on the other were evaluated. Tertiary Butyl Hydroquinone (TBHQ) was considered as the antioxidant and Calophyllum Inophyllum vegetable oil was taken as the feedstock for biodiesel production. The test fuel samples were neat diesel (D100), 10% and 20% blend of Calophyllum biodiesel with diesel (CB10 and CB20) and 1500 ppm of TBHQ in CB10 and CB20 (CBT10 and CBT20). The results indicated that neat biodiesel blended test fuels (CB10 and CB20) exhibited lower brake thermal efficiency compared to the diesel baseline by a margin of 3% to 10% at full load.
Technical Paper

Development of a Dedicated Hydrogen Port Injection Kit for Small Engines

2015-09-29
2015-01-2881
The danger posed by climate change and the striving for securities of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Man's energy requirements are touching astronomical heights. The natural resources of the Earth can no longer cope with it as their rate of consumption far outruns their rate of regeneration. The automotive sector is without a doubt a chief contributor to this mayhem as fossil fuel resources are fast depleting. The harmful emissions from vehicles using these fuels are destroying our forests and contaminating our water bodies and even the air that we breathe. The need of the hour is to look not only for new alternative energy resources but also clean energy resources. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms.
Technical Paper

Performance and Emission Characteristics of n-Butanol and Iso-Butanol Diesel Blend Comparison

2015-09-29
2015-01-2819
The growing energy demand and limited petroleum resources in the world have guided researchers towards the use of clean alternative fuels like alcohols for their better tendency to decrease the engine emissions. To comply with the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. The use of alcohols as a blending agent in diesel fuel is rising, because of its benefits like enrichment of oxygen, premixed low temperature combustion (LTC) and enhancement of the diffusive combustion phase. Several researchers have investigated the relationship between LTC operational range and cetane number. In a light-duty diesel engine working at high loads, a low-cetane fuel allowed a homogeneous lean mixture with improved NOx and smoke emissions joint to a good thermal efficiency.
Technical Paper

Design and Development of Single Seat, Four Wheeled All-Terrain Vehicle for Baja Collegiate Design Series

2015-09-29
2015-01-2863
There has been a rapid increase in popularity of multipurpose All-terrain vehicles (ATV) across the globe over the past few years. SAE BAJA event gives student-community an opportunity to delve deeper into the nitty-gritty of designing a single seat, four-wheeled off road vehicle. The design and development methodology presented in this paper is useful in conceptualization of an ATV for SAE BAJA event. The vehicle is divided into various subsystems including chassis, suspension, drive train, steering, and braking system. Further these subsystems are designed and comprehensively analyzed in software like SolidWorks, ANSYS, WINGEO and MS-Excel. The 3-D model of roll cage is designed in SolidWorks and analyzed in ANSYS 9.0 for front, rear and side impact along with front and side roll-over conditions. Special case of wheel bump is also analyzed. Weight, wall thickness and bending strength of tubing used for roll cage are comprehensively studied.
Technical Paper

A Study on the Application of Turbo Expansion in Light Duty Gasoline and Diesel Engines: A Review

2018-04-03
2018-01-0051
Turboexpansion is a concept which is aimed at reducing the fuel consumption of pressure-charged combustion engines by providing over-cooled air to the engine prior to its induction in the combustion chamber. The performance of the engine is dependent on intake charge density which is preferred to be high at reduced charge air temperature. This becomes achievable through a cooling system known as a turbo expander which expands a high-pressure gas to produce work that is usually employed to drive a compressor. Though, initially used for the purpose of refrigeration in industries, for the past few decades various researches have proved its efficiency in internal combustion engines. In gasoline engines, it is usually employed to extend the knock limit and reduce carbon emissions. Also, an extension to the knock limit allows several improvements in parameters such as increased specific output, an increase in compression ratio and a reduction in the fuel consumption of the engine.
Technical Paper

Effect of Blending of Ethanol in Kusum Oil on Performance and Emission Characteristics of a Single Cylinder Diesel Engine

2014-04-01
2014-01-1396
In the present study, ethanol was added in lower proportions to non-edible vegetable oil “Schleichera oleosa” or “Kusum”, to evaluate various performance and emission characteristics of a single cylinder; diesel engine. For engine's trial, four samples were prepared with 5%, 10%, 15% and 20% ethanol in kusum oil (v/v) and the blends were named as E5K95, E10K90, E15K85 and E20K80 respectively. Neat Kusum oil was named as K100. The results indicated that brake thermal efficiency (BTE) was found to increase with increase in volume fraction of ethanol in the kusum oil. E5K95, E10K90, E15K85 and E20K80 test fuels exhibited maximum BTE of 25.4%, 26.4%, 27.4% and 27.7% respectively as compared to 23.6% exhibited by the neat Kusum oil. Similarly, full load brake specific energy consumption (BSEC) decreased from 16.3MJ/kWh in case of neat Kusum oil to 15.1MJ/kWh for E20K80 with an almost linear reduction pattern with increased ethanol composition in the test fuel.
Technical Paper

Some Experimental Studies on Combustion, Emission and Performance Characteristics of an Agricultural Diesel Engine Fueled with Blends of Kusum Oil Methyl Ester and Diesel

2014-04-01
2014-01-1952
Biodiesel from non-edible vegetable oils is of paramount significance in India due to insufficient edible oil production. The present work deals with relatively underutilized non-edible oil “Schleichera oleosa” or “Kusum”. The Kusum biodiesel (KB) was produced using a two stage esterification cum transesterification process as the free fatty acid content of the oil was high. Important physico-chemical properties were evaluated and they were found to conform with corresponding ASTM/EN standards. Various test fuels were prepared for the engine trial by blending 10%, 20%, 30% and 40% of KB in diesel by volume and were named as KB10, KB20, KB30 and KB40 respectively. The results showed that full load brake thermal efficiency was dropped by 3.8% to 17% with increase in KB composition in the test fuel. Diesel (D100) showed the maximum full load brake specific energy consumption followed by KB10, KB20, KB30 and KB40.
X