Refine Your Search

Topic

Author

Search Results

Technical Paper

Study of Performance and Emissions Parameters of Single Cylinder Diesel Engine Fuelled with Micro Emulsion of Jatropha Oil and Ethanol

2017-10-08
2017-01-2331
The use of alternative fuel has many advantages and the main ones are its renewability, biodegradability with better quality exhaust gas emission, which do not contribute to raise the level of carbon dioxide in the atmosphere. The use of non-edible vegetables oils as an alternative fuels for diesel engine is accelerated by the energy crisis due to depletion of resources and increase in environmental problems. In Asian countries like India, great need of edible oil as a food so cannot use these oils as alternative fuels for diesel engine. However there are many issues related to the use of vegetable oils in diesel engine that is high viscosity, low calorific value, high self-ignition temperature etc. Jatropha curcas has been promoted in India as a sustainable substitute to diesel fuel. This research prepared micro emulsions of ethanol and Jatropha vegetable oil in different ratio and find out the physico-chemical parameters to compare with mineral diesel oil.
Technical Paper

Three Dimensional CFD Analysis on Aerodynamic Drag Reduction of a Bluff Tractor Trailer Body using Vortex Generators

2013-09-24
2013-01-2458
This paper presents a CFD analysis for drag reduction of a Class 8 Tractor-Trailer arrangement. A three dimensional bluff body model of the truck is simulated for a zero degree yaw angle at a speed of 50 miles per hour for a Reynolds Number of 3.3 million. In this paper, the role of vortex generators is investigated for overall drag reduction of the body. The key areas of interest for lowering the drag coefficient are the tractor-trailer gap and the trailer end. The designing of the body was done on DS SolidWorks whereas the CFD simulations were performed on commercial software Ansys Fluent. The Standard k-ε turbulence model was chosen for the simulation while the convergence criterion for the residuals was set at 10−6. The simple bluff body showed a drag coefficient of 1.654. The first design iteration involved increasing the tractor frontal area which resulted in a reduction of 4% in the drag coefficient.
Technical Paper

Potential Utilization of CNG in Stationary HCCI Engine

2013-10-14
2013-01-2508
Internal combustion engines are extensively used in every field of life in today's world. Diesel engines being more efficient are preferred in the industrial and transportation sector in comparison to spark ignition engines for their higher efficiency, versatility and ruggedness. The major emissions of diesel engines are oxides of nitrogen (NOx), particulate matter (PM), carbon dioxide (CO2), carbon monoxide (CO). Among these emissions, oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For reduction of oxides of nitrogen (NOx) and particulate matter simultaneously, the use of Homogeneous Charge Compression Ignition (HCCI) have provided a sustainable solution in the present scenario. Further, the use of CNG in HCCI engine along with pilot diesel injection; the emissions have been decreased drastically. Homogeneous mixing of fuel and air leads to cleaner combustion and lower emissions.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

2013-09-17
2013-01-2170
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Technical Paper

Process Optimization of Biodiesel Production for Mixed Neem (Azadirachta indica) and Sesame (Sesamum indicum L.) Biodiesel Using Response Surface Methodology Based on Doehlert’s Experimental Design

2017-03-28
2017-01-1285
Exploring and enhancement of biodiesel production from feedstock like non-edible vegetable oil is one of the powerful method to resolve inadequate amount of conventional raw materials and their high prices. The main aim of this study is to optimize the biodiesel production process parameters of a biodiesel obtained from non-edible feedstocks, namely Neem (Azadirachta indica) oil and Sesame (Sesamum indicum L.) oil, with response surface methodology using Doehlert’s experimental design. Based on the results, the optimum operating parameters for transesterification of the mixture A50S50 oil mixture at 51.045° C over a period of 45 minutes are as follows: methanol-to-oil ratio: 8.45, and catalyst concentration: 1.933 wt.%. These optimum operating parameters give the highest yield for the A50S50 biodiesel with a value of 95.24%.
Technical Paper

Effect of Exhaust Gas Recirculation on Performance of an SI Engine Fueled with Methanol-Gasoline and Ethanol-Gasoline Blend with Hydrogen Boosting

2017-03-28
2017-01-1282
Dependency and increase in use of fossil fuels is leading to its depletion and raises serious environmental concerns. There are international obligations to reduce emissions and requirements to strengthen security of fuel supply which is pressuring the automobile industry to use cleaner and more sustainable fuels. Hydrogen fits these criteria as it is not just an abundant alternative but also a clean propellant and Hydrogen engines represent an economic alternative to fuel cells. In the present investigation, EGR has been used on hydrogen boosted SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation and gasoline-methanol and ethanol-gasoline blends without EGR.
Technical Paper

Performance Based Optimization of Intake and Injection Parameters of an Advanced Compressed Air Engine Kit

2017-03-28
2017-01-1291
The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
Technical Paper

A CFD Investigation of Aerodynamic Effects of Wheel Center Geometry on Brake Cooling

2017-03-28
2017-01-1537
Improving brake cooling has commanded substantial research in the automotive sector, as safety remains paramount in vehicles of which brakes are a crucial component. To prevent problems like brake fade and brake judder, heat dissipation should be maximized from the brakes to limit increasing temperatures. This research is a CFD investigation into the impact of existing wheel center designs on brake cooling through increased cross flow through the wheel. The new study brings together the complete wheel and disc geometries in a single CFD study and directly measures the effect on brake cooling, by implementing more accurately modeled boundary conditions like moving ground to replicate real conditions correctly. It also quantifies the improvement in the cooling rate of the brake disc with a change in wheel design, unlike previous studies. The axial flow discharge was found to be increased to 0.47 m3/min for the suggested design in comparison to 0.04 m3/min for traditional design.
Technical Paper

Performance Evaluation and Emission Characteristics of Biodiesel-Alcohol-Diesel Blends Fuelled in VCR Engine

2016-10-17
2016-01-2265
The diesel engine has for many decades now assumed a leading role in both the medium and medium-large transport sector due to their high efficiency and ability to produce high torque at low RPM. Furthermore, energy diversification and petroleum independence are also required by each country. In response to this, biodiesel is being considered as a promising solution due to its high calorific value and lubricity conventional petroleum diesel. However, commercial use of biodiesel has been limited because of some drawbacks including corrosivity, instability of fuel properties, higher viscosity, etc. Biodiesel are known for lower CO, HC and PM emissions. But, on the flip side they produce higher NOx emissions. The addition of alcohol to biodiesel diesel blend can help in reducing high NOx produced by the biodiesel while improving some physical fuel properties.
Technical Paper

Enhancement in Performance and Emission Characteristics of Diesel Engine by Adding Alloy Nanoparticle

2016-10-17
2016-01-2249
Enhancement of combustion behavior of conventional liquid fuel using nanoscale materials of different properties is an imaginative and futuristic topic. This experiment is aimed to evaluate the performance and emission characteristics of a diesel engine when lade with nanoparticles of Cu-Zn alloy. The previous work reported the effect of metal/metal oxide or heterogeneous mixture of two or more particles; less work had been taken to analyze the homogeneous mixture of metals. This paper includes fuel properties such as density, kinematic viscosity, calorific value and performance measures like brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and emission analysis of NOX, CO, CO2, HC. For the same solid concentration, nano-fuel is compared with base fuel at different engine loads; and its effect when lade at different concentrations.
Technical Paper

Performance and Emission Analysis of a CI Engine in Dual Mode with CNG and Karanja Oil Methyl Ester

2014-09-30
2014-01-2327
Rapid depletion of fossil fuels is urgently demanding an extensive research work to find out the viable alternative fuel for meeting sustainable energy demand without any environmental impact. In the future, our energy systems will need to be renewable, sustainable, efficient, cost-effective, convenient and safe. Therefore, researchers has shown interest towards alternative fuels like vegetable oils, alcohols, LPG, CNG, Producer gas, biogas in order to substitute conventional fuel i.e. diesel used in compression ignition (CI) engine. However, studies have suggested that trans-esterified vegetable oils retain quite similar physico-chemical properties comparable to diesel. Besides having several advantages, its use is restricted due to higher emissions i.e. NOx, CO, HC and deposits due to improper combustion. Hence, there is a need of cleaner fuel for diesel engines for the forthcoming stringent emissions norms and the fossil depletion.
Technical Paper

Tribological Performance of Lubricating Oil Contaminated with Fine Dust Particles

2014-09-30
2014-01-2334
The economics of operating internal combustion engines in cars, buses and other automotive equipment is heavily affected by friction and wear losses caused by abrasive contaminants. As such, dust is a universal pollutant of lubricating oils. Road dust consists of depositions from vehicular and industrial exhausts, tire and brake wear, dust from paved roads or potholes, and from construction sites. Present research investigates the influence of dust powder of size 5 μm-100 μm as contaminant in SAE 20W-40 lubricant on the relative motion of a plane surface over the other having circular surface in contact. A pin-on-disk setup as per ASTM G99 has been used to conduct the experiments, firstly at increasing rpm keeping constant load of 118 N, and secondly by increasing loads, keeping rpm constant at 1000. The contaminated lubricant has been used to study its influence on friction and wear rate at the interface of pin of 12 mm diameter and disk at track diameter of 98 mm.
Technical Paper

Computational Analysis of Flap Camber and Ground Clearance in Double-Element Inverted Airfoils

2019-06-11
2019-01-5065
Drag and lift are the primary aerodynamic forces experienced by automobiles. In competitive automotive racing, the design of inverted wings has been the subject of much research aimed at improving the performance of vehicles. In this direction, the aerodynamic impact of change in maximum camber of the flap element and ground effect in a double-element inverted airfoil was studied. The National Advisory Committee for Aeronautics (NACA) 4412 airfoil was taken as the constant main element. The camber of the flap element was varied from 0% to 9%, while ground clearance was varied from 0.1c to 1.0c. A two-dimensional (2D) Computational Fluid Dynamics (CFD) study was performed using the realizable k-ε turbulence model in ANSYS Fluent 18.2 to analyze the aerodynamic characteristics of the airfoil. Parameters such as drag coefficient, lift coefficient, pressure distribution, and wake flow field were investigated to present the optimum airfoil configuration for high downforce and low drag.
Technical Paper

Effect of Fender Coverage Angle on the Aerodynamic Drag of a Bicycle

2019-10-11
2019-01-5086
While riding cycles, cyclists usually experience an aerodynamic drag force. Over the years, there has been a global effort to reduce the aerodynamic drag of a cycle. Fenders affect the aerodynamic drag of a cycle to a large extent, and fender coverage has a pronounced effect on the same. In this article, various fender coverage angles, varying from 60° to 270°, were studied to predict the aerodynamic drag with the help of a validated CFD model in SolidWorks Flow Simulation. The model was based on the Favre-Averaged Navier-Stokes (FANS) equations solved using the k-ɛ model. It was predicted that aerodynamic drag coefficient reduced fender coverage angle up to 135°, and thereafter started increasing. Analyses were carried out at velocities of 6 m/s, 8 m/s and 10 m/s and the results were found to be similar, with a minimum aerodynamic drag coefficient at 135° occurring in all the cases under study.
Technical Paper

Numerical Investigation on Aerodynamic Effects of Vanes and Flaps on Automotive Underbody Diffusers

2017-09-19
2017-01-2163
The automotive underbody diffuser is an expansion device which works by speeding up the air flowing underneath a vehicle. This reduces the pressure below the vehicle thereby increasing downforce. When designed properly, it can lead to a massive gain in downforce and even a reduction in drag. However, a majority of the research and development is restricted to motorsport teams and supercar manufacturers and is highly secretive. Most of the publicly available research has been done for very simple shapes (bluff bodies) to study the effects of ground clearance and rake angle. Very little research has been done for complex geometries with vanes, flaps and vortex generators. This paper aims to investigate the effects of the addition of vanes/strakes and flaps, their location as well as angle, on diffuser performance. Computational Fluid Dynamics simulations have been carried out using three dimensional, steady state RANS equations with the k-ε turbulence model on STAR CCM+ V9.06.
Technical Paper

Study of Starting Friction during the Running of Plain Journal Bearing under Hydrodynamic Lubrication Regime

2018-04-03
2018-01-0838
Study of starting friction during the running of the engineering application has an important role in designing them, especially working at low speed and high load conditions. A significant portion of research and development today is concentrated on saving the energy by reducing the friction. The present paper addresses the measurement technique and analysis of the starting friction during the running of the journal bearing. The experiments were performed during the hydrodynamic lubrication regime using SAE 15W-30 lubricating oil. A journal bearing having journal diameter as 22 mm, length/diameter ratio 1 and 0.027 mm radial clearance has been designed and fabricated to test the starting friction. Analysis of starting friction and average friction torque during the running of journal bearing was done at 900, 1150, 1400, 1650, 1900, 2150 and 2400 revolution per minute (rpm) speed of the journal at load values of 250, 400 and 500 N.
Technical Paper

Design and Development of Single Seat, Four Wheeled All-Terrain Vehicle for Baja Collegiate Design Series

2015-09-29
2015-01-2863
There has been a rapid increase in popularity of multipurpose All-terrain vehicles (ATV) across the globe over the past few years. SAE BAJA event gives student-community an opportunity to delve deeper into the nitty-gritty of designing a single seat, four-wheeled off road vehicle. The design and development methodology presented in this paper is useful in conceptualization of an ATV for SAE BAJA event. The vehicle is divided into various subsystems including chassis, suspension, drive train, steering, and braking system. Further these subsystems are designed and comprehensively analyzed in software like SolidWorks, ANSYS, WINGEO and MS-Excel. The 3-D model of roll cage is designed in SolidWorks and analyzed in ANSYS 9.0 for front, rear and side impact along with front and side roll-over conditions. Special case of wheel bump is also analyzed. Weight, wall thickness and bending strength of tubing used for roll cage are comprehensively studied.
Technical Paper

Development of a Dedicated Hydrogen Port Injection Kit for Small Engines

2015-09-29
2015-01-2881
The danger posed by climate change and the striving for securities of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Man's energy requirements are touching astronomical heights. The natural resources of the Earth can no longer cope with it as their rate of consumption far outruns their rate of regeneration. The automotive sector is without a doubt a chief contributor to this mayhem as fossil fuel resources are fast depleting. The harmful emissions from vehicles using these fuels are destroying our forests and contaminating our water bodies and even the air that we breathe. The need of the hour is to look not only for new alternative energy resources but also clean energy resources. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms.
Technical Paper

Design and Optimization of Composite Horizontal Axis Wind Turbine (Hawt) Blade

2018-04-03
2018-01-1034
Wind energy is clean and renewable source of energy that is an attractive alternative to non-conventional sources of energy. Due to rapid increase in global energy requirements, this form of energy is gaining its share of importance. Unlike nuclear power or tar sand oils, wind energy does not leave a long-term toxic legacy. Using MATLAB algorithms, multi-optimization of wind turbine design can be achieved. Therefore, an aerodynamic mathematical model is developed to obtain the optimal chord length and twist angle distribution along the blade span. Further, a promising generic blade design is used to initialize a detailed structure optimization wherein leading edge panel (LEP), Spar cap, Shear web, Trailing edge panel (TEP) reinforcement are sized using composite laminates so that the blade is according to the intended design standard. Initially blade airfoils are analyzed on 2D platform and then the results are used to construct 3D model of Horizontal Axis Wind Turbine (HAWT) blade.
Technical Paper

Study of Performance and Emission Characteristics of Propan-2-ol and Gasoline Fuel Blends in an Unmodified Spark Ignition Engine

2019-04-02
2019-01-0793
In view of the rapid depletion, increasing prices and uneven distribution of conventional petroleum fuels; the interest in the use of alternative fuels has increased exponentially. Fuels such as biodiesel & alcohol have been evaluated both at experimental and commercial scale due to improved emission characteristics as compared to conventional fuels. Alcohols are oxygenated and result in improving the engine performance. As a blend with conventional gasoline, the alcohols enhance the premixed and diffusive combustion phase which improves the combustion efficiency. The present investigation evaluates studies on stability and homogeneity along with physicochemical properties like density, viscosity, calorific value, copper-strip corrosion and solubility at room temperature of Propan-2-ol and gasoline blends. Comprehensive engine trials on unmodified petrol engine fuelled with blends of Propan-2-ol and gasoline blends in the proportions of 5, 10, 15 and 20% by volume have been conducted.
X