Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Technical Paper

A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems

2001-03-05
2001-01-0959
Lithium-based battery technology offers performance advantages over traditional battery technologies at the cost of increased monitoring and controls overhead. Multiple-cell Lead-Acid battery packs can be equalized by a controlled overcharge, eliminating the need to periodically adjust individual cells to match the rest of the pack. Lithium-based based batteries cannot be equalized by an overcharge, so alternative methods are required. This paper discusses several cell-balancing methodologies. Active cell balancing methods remove charge from one or more high cells and deliver the charge to one or more low cells. Dissipative techniques find the high cells in the pack, and remove excess energy through a resistive element until their charges match the low cells. This paper presents the theory of charge balancing techniques and the advantages and disadvantages of the presented methods.
Technical Paper

Comparative Study of Hybrid Powertrain Strategies

2001-08-20
2001-01-2501
Hybrid electric vehicles have the potential to reduce air pollution and improve fuel economy without sacrificing the present conveniences of long range and available infrastructure that conventional vehicles offer. Hybrid vehicles are generally classified as series or parallel hybrids. A series hybrid vehicle is essentially an electric vehicle with an on-board source of power for charging the batteries. In a parallel hybrid vehicle, the engine and the electric motor can be used to drive the vehicle simultaneously. There are various possible configurations of parallel hybrid vehicles depending on the role of the electric motor/generator and the engine. In this paper, a comparative study of the drivetrains of five different hybrid vehicles is presented. The underlying design architectures are examined, with analysis as to the tradeoffs and advantages represented in these architectures.
Technical Paper

Thermal Comfort Prediction and Validation in a Realistic Vehicle Thermal Environment

2012-04-16
2012-01-0645
The focus of this study is to validate the predictive capability of a recently developed physiology based thermal comfort modeling tool in a realistic thermal environment of a vehicle passenger compartment. Human subject test data for thermal sensation and comfort was obtained in a climatic wind tunnel for a cross-over vehicle in a relatively warm thermal environment including solar load. A CFD/thermal model that simulates the vehicle operating conditions in the tunnel, is used to provide the necessary inputs required by the stand-alone thermal comfort tool. Comparison of the local and the overall thermal sensation and comfort levels between the human subject test and the tool's predictions shows a reasonably good agreement. The next step is to use this modeling technique in designing and developing energy-efficient HVAC systems without compromising thermal comfort of the vehicle occupants.
Technical Paper

Energy Harvesting as Strategy for Reducing Vehicles Emissions

2012-10-02
2012-36-0114
In vehicular mobility context, it is extremely important for the environmental sustainability that the available energy will be used as efficiently as possible, both in the use of internal combustion engines (ICE) as powertrain, as well in the application of Hybrid and Electric Vehicle Motors (HEV/EV). In this comparison, ICE has a lower efficiency when compared to electric motors, wasting much of the potential energy of the fuel in form of heat and noise. On the other hand, the electric vehicles face limitation in autonomy and recharge time, demanding for a more efficient use of energy stored in batteries. This study aims to present emerging technologies for reuse of energy within the automotive context, originally known as “Energy Harvesting” and “Renewable Energies”.
Technical Paper

Dual-Voltage Electrical System with a Fuel Cell Power Unit

2000-08-21
2000-01-3067
Fuel cells show great promise in generating electrical power for a variety of uses. In the automotive realm, one focus has been on the use of fuel cells for primary vehicle propulsion. Another emerging application is the fuel cell as the primary provider of electrical power to the vehicle, augmenting or replacing the traditional alternator, while producing higher power levels. The advantage of the fuel cell in this role is that the fuel cell operation is de-coupled from that of the engine. High power levels can be achieved independent of engine speed and power can be produced without the engine running. This paper examines the application of a fuel cell auxiliary power unit (APU) to a dual-voltage 42V/14V automotive electrical system meeting the evolving 42V PowerNet specifications. An architecture for this electrical system is presented, followed by a sizing analysis to properly match the fuel cell stack to the voltage of the PowerNet and to a 42V battery pack.
Technical Paper

Batteries for 42/14 Volt Automotive Electrical Systems

2000-08-21
2000-01-3065
The automotive industry is moving to a higher voltage for the electrical system. This change will occur because the total electrical power required by the vehicles will increase to a level where the current requirements at 14 volts will be impractical. Some of the new loads will change the duty cycle of the battery. The most notable change is the proposed start/stop mode of vehicle operation where the engine is stopped and restarted frequently to avoid prolonged operation at idle. An additional feature would be to use an electric motor to assist in acceleration and/or to actually launch the vehicle. This paper addresses the changes in battery requirements brought on by these new features. A means of analysis for choosing the appropriate battery technology is presented. We also propose a life test to establish a benchmark for current battery technology when it is used in a new duty cycle.
Technical Paper

Comparison of Lidar-Based and Radar-Based Adaptive Cruise Control Systems

2000-03-06
2000-01-0345
Since the late 1980s, Delphi Automotive Systems has been very involved with the practical development of a variety of Collision Avoidance products for the near- and long-term automotive market. Many of these complex collision avoidance products will require the integration of various vehicular components/systems in order to provide a cohesive functioning product that is seamlessly integrated into the vehicle infrastructure. One such example of this system integration process was the development of an Adaptive Cruise Control system on an Opel Vectra. The design approach heavily incorporated system engineering processes/procedures. The critical issues and other technical challenges in developing these systems will be explored. Details on the hardware and algorithms developed for this vehicle, as well as the greater systems integration issues that arose during its development will also be presented.
Technical Paper

Multiple Environment Accelerated Reliability Test Development

1999-10-10
1999-01-3387
The four major discriminators for products in the market place are Technology, Quality,1 Cost and Delivery. Effective measurement systems and initial design quality have the largest impact on delivered field quality, program development cost and timing, as well as customer enthusiasm. System-level reliability testing methods have a major impact on the business health of any product. The implementation of laboratory forced failure testing in simultaneously applied energy environments has the largest influence for "designing in" field reliability and lowering development cost. Clearly a policy change from success based testing to forced failure testing has had the largest impact on results for the consumer.
Technical Paper

Advanced Engine Management Using On-Board Gasoline Partial Oxidation Reforming for Meeting Super-ULEV (SULEV) Emissions Standards

1999-08-17
1999-01-2927
This paper first reports on the benchmarking of a gasoline- fueled vehicle currently for sale in California that is certified to ULEV standards. Emissions data from this vehicle indicate the improvements necessary over current technology to meet SULEV tailpipe standards. Tests with this vehicle also show emissions levels with current technology under off-cycle conditions representative of real-world use. We then present Delphi's strategy of on-board partial oxidation (POx) reforming with gasoline-fueled, spark-ignition engines. On-board reforming provides a source of hydrogen fuel. Tests were run with bottled gas simulating the output of a POx reformer. Results show that an advanced Engine Management System with a small on-board reformer can provide very low tailpipe emissions both under cold start and warmed-up conditions using relatively small amounts of POx gas. The data cover both normal US Federal Test Procedure (FTP) conditions as well as more extreme, off-cycle operation.
Technical Paper

Development of a Non-Thermal Plasma Reactor Electrical Model for Optimum NOx Removal Performance

2000-10-16
2000-01-2893
A double dielectric barrier discharge reactor driven by an alternating voltage is a relatively simple approach to promote oxidation of NO to NO2 for subsequent reduction in a catalyst bed. The chemical performance of such a non-thermal plasma reactor is determined by its current and electric field behavior in the gap, and by the fraction of the current carried by electrons, because the key reactants which initiate the NO oxidation and accompanying chemical changes are produced there, mostly by electron impact. We have tried to determine by models and experiments the bounds on performance of double dielectric barrier reactors and guidelines for optimization. Models reported here predict chemical results from time-resolved applied voltage and series sense capacitor data.
Technical Paper

Full Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing

2010-04-12
2010-01-1080
CFD analysis was performed using the FLUENT software to design the thermal system for a hybrid vehicle battery pack. The battery pack contained multiple modular battery elements, called bricks, and the inlet and outlet bus bars that electrically connected the bricks into a series string. The simulated thermal system was comprised of the vehicle cabin, seat cavity, inlet plenum, battery pack, a downstream centrifugal fan, and the vehicle trunk. The fan was modeled using a multiple reference frame approach. A full system analysis was done for airflow and thermal performance optimization to ensure the most uniform cell temperatures under all operating conditions. The mesh for the full system was about 13 million cells run on a 6-node HP cluster. A baseline design was first analyzed for fluid-thermal performance. Subsequently, multiple design iterations were run to create uniform airflow among all the individual bricks while minimizing parasitic pressure drop.
X