Refine Your Search

Topic

Author

Search Results

Technical Paper

Resistance Welding for Automotive Wiring Harness Connection - Small Gauge Cables

2012-10-02
2012-36-0153
Miniaturization is an important trend in many technology segments, once it can enable innovative applications generating new markets. This trend was begun in electronics industry after World War II and has spawned changes into automotive sector also. For Automotive Wiring Harness, miniaturization is clearly presented in most of the components, mainly because of its benefits like the potential of mass reduction, cost reduction and efficiency improvement. Furthermore the main voice of customer points to cable gauge reduction that represents a considerable challenge for connection manufacturing process due to quality control limitations presented by conventional crimp process for 0,35 [mm₂] cables and smaller. According to that, the scope of this article is to present, in details, a manufacturing process optimization for an alternative and more robust technology of joining copper stranded cables to tin brass terminals used on automotive wiring harness, Resistance Welding.
Technical Paper

Paradox of Miniaturization Trend Versus Hybrid Electrical Vehicle Requirements

2012-10-02
2012-36-0262
In recent years, a number of key influences are contributing to accelerate technological innovation in the automotive industrial sector. Concerns about renewable energy resource, fossil-fuels crises and higher gasoline prices, global warming awareness and environmental impacts, scarcity of minerals/metals and electronics demands rising are some of the major challenges for vehicle automakers and their suppliers. The interest in alternative fuel vehicles, especially hybrid-electrical vehicles (HEV) or renewable energy power concepts for road vehicles has become intensified and represents a significant area of research and development in order to meet nowadays global demands. However because of Hybrid Vehicles unique Power Supply System the electrical/electronic architecture (E/E) is sophisticated, requesting more robust sealing and a particular wiring harness components, such as connector, terminals and cables.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Technical Paper

An Expandable Passive Optical Star Network Architecture for Automotive Applications

1999-03-01
1999-01-0303
When comparing vehicle communication architectures, the passive star network has been shown to be the highest fault tolerant system. Despite this trait, the passive star architecture has not been widely implemented due to its potential application limitations: insufficient node count and relatively short node lengths. These constraints arise from the basic function of the star, i.e. to evenly distribute a given amount of optical power to all nodes connected to the star without amplification or retransmission. This paper provides a solution to overcome the limitations of the passive star through the introduction of a new communication component, the Active Distribution Node (ADN). The ADN enables a passive star network to support larger node counts and significantly longer node lengths, without sacrificing fault tolerance or the low cost nature of the basic passive star architecture.
Technical Paper

Comparison of Air Meter Interface Strategies for Engine Management Systems

2000-03-06
2000-01-0546
When an air meter is specified for an engine management system, air meter accuracy is given high priority. Air meter manufacturers characterize the accuracy of their products using laboratory instrumentation to measure the air meter output vs. flow characteristics. Ultimately the air meter is applied to an engine management system in a vehicle. The engine management system must use the information provided by the air meter without the benefit of laboratory instrumentation. Therefore, the entire measurement system must be considered in evaluating the effective accuracy. The most fundamental aspect to consider is the output signal format between the air meter and the engine management system. Two commonly available formats will be investigated: frequency and voltage.
Technical Paper

Delphi Electronic Throttle Control Systems for Model Year 2000;Driver Features, System Security, and OEM Benefits. ETC for the Mass Market

2000-03-06
2000-01-0556
Delphi has developed a second-generation Electronic Throttle Control system optimized for high volume applications. The Delphi system integrates several unique driver performance features, extensive security/diagnostics, and provides significant benefits for the vehicle manufacturer. For Model Year 2000, the Delphi ETC system has been successfully implemented on several popular SUVs and passenger cars built and sold around the world. The ETC driver features, security systems, and manufacturer benefits are presented as implemented on these Model Year 2000 applications.
Technical Paper

Implementation of Lead-Free Solder for Automotive Electronics

2000-03-06
2000-01-0017
Lead-free solders for electronics have been actively pursued since the early 1990's here and abroad for environmental, legislative, and competitive reasons. The National Center for Manufacturing Sciences (NCMS-US)1, the International Tin Research Institute (ITRI-UK)2, Swedish Institute of Production Engineering Research (IVF-Sweden)3, Japan Institute of Electronics Packaging (JIEP Japan)4, Improved Design Life and Environmentally Aware Manufacture of Electronics Assemblies by Lead-free Soldering (IDEALS-Europe)5, and, more recently, the National Electronics Manufacturing Initiative (NEMI-US)6 have been aggressively seeking lead-free solutions The automotive industry has some unique requirements that demand extensive testing of new materials and processes prior to implementation. The specific steps taken at Delphi Automotive Systems with lead-free solder will be described along with the lessons learned along the way.
Technical Paper

Flow Simulation of a Direct-Injection Gasoline Diaphragm Fuel Pump with Structural Interactions

2000-03-06
2000-01-1047
The fluid flow in a direct-injection gasoline diaphragm fuel pump is analyzed using a multi-physics simulation program. The analysis accounts for fully coupled fluid-structure interactions (FSI), the effects of the diaphragm movement and its deformation, the FSI between the diaphragm and the fluid, the FSI between the inlet/outlet valves and the fluid, and the solid-solid contact between the inlet/outlet valves and the valve seats. The flow rate of the fuel pump under various cam speeds is examined. The accuracy of the predictions for the flow rate of the fuel pump is assessed through comparisons with the experimental data, and moderately good agreement is obtained. In addition, some conclusions based on this study are summarized for reference.
Technical Paper

Cavity Fill Balancing Technique for Rubber Injection Molding

2015-04-14
2015-01-0715
Balancing the fill sequence of multiple cavities in a rubber injection mold is desirable for efficient cure rates, optimized cure times, and consistent quality of all molded parts. The reality is that most rubber injection molds do not provide a consistent uniform balanced fill sequence for all the cavities in the mold - even if the runner and cavity layout is geometrically balanced. A new runner design technique, named “The Vanturi Effect”, is disclosed to help address the inherent deficiencies of traditional runner and cavity layouts in order to achieve a more balanced fill sequence. Comparative analysis of molded runner samples reveals a significant and positive improvement in runner and cavity fill balancing when the Vanturi Effect is integrated into the runner design.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Technical Paper

Development Experience with Steer-by-Wire

2001-08-20
2001-01-2479
Recent advances in dependable embedded system technology, as well as continuing demand for improved handling and passive and active safety improvements, have led vehicle manufacturers and suppliers to actively pursue development programs in computer-controlled, by-wire subsystems. These subsystems include steer-by-wire and brake-by-wire, and are composed of mechanically de-coupled sets of actuators and controllers connected through multiplexed, in-vehicle computer networks; there is no mechanical link to the driver. This paper addresses fundamental benefits and issues of steer-by-wire, especially those related to automated vehicle control and steering feel quality as perceived by the driver.
Technical Paper

Analysis of Brake Caliper Seal-Groove Design

2002-03-04
2002-01-0927
It is well known that the design of the seal groove assembly in the brake caliper greatly influences the braking performance. The rubber seal performs the dual function of sealing the piston bore and retracting the caliper piston after a brake apply. However, the seal function is affected by the configuration of the seal groove, as well as the friction at the piston/seal and groove/seal interfaces. The material properties of the rubber seal are also important design parameters. Issues such as fluid displacement, piston retraction, piston sliding force, and brake drag are some of the critical brake performance parameters that must be considered in every caliper seal-groove design. Presently, the brake caliper seal groove design is still based on empirical rules established mainly from past experience and its performance is achieved through prototype testing.
Technical Paper

Environmentally Friendly Car Wiring System

2002-03-04
2002-01-0595
Legal requirements and responsibility for the environment require improved recyclability of car components. This can be achieved by a reduction in the variety of materials used, which can be separated after use. This is being demonstrated for wiring harnesses using a new hook and loop based fastening system. Easier assembly and disassembly, elimination of fixation holes in the car body, and improved serviceability can lead to considerable cost reductions. Field experience on test cars will be available at a later date.
Technical Paper

Flawless Manufacturing of RACam through XCP Protocol

2016-04-05
2016-01-0047
RACam [1] is an Active Safety product designed and manufactured at Delphi and is part of their ADAS portfolio. It combines two sensors - Electronically Scanned RADAR and Camera in a single package. RADAR and Vision fusion data is used to realize safety critical systems such as Adaptive Cruise Control (ACC), Autonomous Emergency Braking (AEB), Lane Departure Warning (LDW), Lane Keep Assist (LKA), Traffic Sign Recognition (TSR) and Automatic Headlight Control (AHL). Figure 1 RACam Front View. With an increase in Active Safety features in the automotive market there is also a corresponding increase in the complexity of the hardware which supports these safety features. Delphi’s hardware design for Active Safety has evolved over the years. In Delphi’s RACam product there are a number of critical components required in order to realize RADAR and Vision in a single package. RACam is also equipped with a fan and heater to improve the operating temperature range.
Technical Paper

Globalization of the Design for Manufacturability/Assembly Process within the Automotive Wiring Assembly Business

1999-03-01
1999-01-0052
Automotive wiring assembly design and manufacturing has evolved from a locally based business to a global business. It is common today to engineer the design of a wiring assembly in one region of the world, to manufacture it in a second region, and to assemble it into the vehicle in a third region. This creates a need for global collaboration, training and communications. Design for Manufacturability (DFM) is a tool that can aid in this, in developing common processes globally, and reducing the cost and design complexity of the product in the early design stages. To develop a global DFM process, an organization must develop and implement a strategy. This paper will review the approach that an automotive wiring assembly supplier adopted. It will enumerate the benefits of developing a global Design for Manufacturability process, selecting a champion, and using a twelve-step plan to integrate DFM into each region.
Technical Paper

Concept to Production: Continuous Surface Keypad Switch

1999-03-01
1999-01-0413
The objective of this paper is to impart the challenges presented and the solutions derived to transform an artist's rendering into a production driver's door switch to be used in the interior of a high profile sports car. The challenges took many forms throughout the process, from data translation and packaging, to the final decorative issues. The results are a finished product providing a new approach to automotive interior switch design. It incorporates a low profile, continuous plane keypad with “soft touch” feel, tactile feedback, and integrated back lighting.
Technical Paper

Two Dimensional Modeling of a Rotary Power Steering Valve

1999-03-01
1999-01-0396
The power steering valve plays a key role in the steering performance of a vehicle. It is desirable, therefore, to have a means of predicting valve performance for the development of the steering system. This paper describes a method of applying the orifice equation to a steering valve, along with the procedure for experimentally determining the flow coefficients for this equation. Data is provided which demonstrates the nature of change of the flow coefficients through the operating range of the valve. A method for accounting for these changes is provided, along with correlation results for measured and predicted valve performance.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

All Olefinic Interiors-What Will It Take To Happen?

2000-03-06
2000-01-0632
TPO is getting wider acceptance for automotive applications. An exterior application like a fascia is a very good example. Interiors are still a challenge due to many reasons including overall system cost. For interior applications, “all-olefin” means it mainly consists of three materials: TPO skin, cross-linked olefinic-based foam and PP substrate. The driving force for TPO in Europe is mainly recyclability while in the USA, it is long-term durability. This paper describes the key limitations of the current TPO systems which are: poor grain retention of TPO skin, shrinkage in-consistency of the skin, high cost of priming (or other treatments) and painting of the skin, lower process window of the semi-crystalline TPO material during thermoforming or In-mold lamination / Low pressure molding, high cost of the foam, low tear strength of the foam for deep draw ratio etc.
Technical Paper

The New Wireless Frontier: Home and Vehicle Connectivity

2004-10-18
2004-21-0068
Our customers expect in their vehicles the same constant connectivity that they experience in their homes through high speed internet portals. New services based on these advances will be transparent and ubiquitous - completely integrated into our lives, just as electricity comes to the wall socket or water from the faucet. The Wi-Fi Radio implements this vision using Wireless Fidelity (Wi-Fi) based on the suite of IEEE 802.11 standards. Drivers have constant wireless connectivity and personalized digital content made available to them through the Wi-Fi Radio. Ford and our partner Delphi developed the Wi-Fi Radio to overcome the inherent functional and packaging limitations of our vehicles, to quickly introduce new technology at affordable prices and to seamlessly integrate new services into the vehicle. We chose the radio as the integration site because the radio is accessible to every customer and affordable on every vehicle.
X