Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Determining Hearing Threshold of Interior Noise Using Adaptive Procedure

2001-04-30
2001-01-1574
A jury evaluation study has been conducted to determine the hearing threshold of IP gauge stepping motor noise using a transformed up-down procedure. The stepping motor noise was recorded in an anechoic chamber and was used as a signal in the study. To determine the masked threshold, this signal was adjusted to various gain levels and mixed with interior engine noise at selected rpm as masking noise. In this study, the Adaptive Procedure was used, and a software application was developed for this purpose. Twenty subjects, selected based on hearing test results, participated in this jury evaluation. The findings of this study indicated that Adaptive Procedure is an effective approach in determining hearing threshold for automotive applications. A design criterion for acoustical characteristics of the IP gauge DC motor noise has been developed based on the results of this study.
Technical Paper

Identification and Elimination of Steering Systems Squawk Noise

1997-05-20
972058
The problem being investigated involves a noise-quality issue on a power steering application, when a sudden change of steering wheel angle generates an unwanted steering system noise or “Squawk.” This phenomenon is mostly observed during parking maneuvers, especially at lock positions and when the hydraulic fluid reaches a critical temperature on the specific application. The objective of the work to solve this noise-quality issue was to first identify the cause and then eliminate the Squawk noise. There were several constraints: No change could be made in the properties or type of hydraulic fluid used due to specification requirements; Steering wheel valve torsion bar characteristic (torque vs. angle) needed to be maintained within specification for ride and handling purposes; and, In addition to the mentioned constraints, a high capability of noise elimination generated by the production tolerances and dispersion has been considered.
Technical Paper

Isolating Hydraulic Noise from Mechanical Noise in Power Rack & Pinion Steering Systems

1999-03-01
1999-01-0397
The purpose of this report is to quantify the methodology for evaluating and isolating rattle noises in power rack & pinion steering systems. In today's ever changing market of vehicle body & suspension changes, it's very important that the correct process be used to identify the correct noise source. The results of this evaluation procedure will help sort out the difference between hydraulic generated noises and mechanical generated noises. The process used in sorting the hydraulic noise from the mechanical noise is through the use of a “standpipe”, which dampens the hydraulic reaction pulse in the hydraulic steering system. We refer to this hydraulic pulse as “hydraulic rattle”, and is often confused with mechanical rattle during vehicle evaluations. The concept of the standpipe is similar to that used in household plumbing, which reduces the effects of hydraulic hammering in the water pipes.
Technical Paper

Modal Participation Analysis for Identifying Brake Squeal Mechanism

2000-10-01
2000-01-2764
Brake squeal phenomenon often involves modal coupling between various component modes. In order to reduce or eliminate squeal, it is very important to understand the coupling mechanism so that the key component(s) can be modified accordingly. This paper demonstrates a quantitative method to define system mode shapes using the concept of modal participation factors. This method is implemented on a front disc brake system to identify the modal coupling mechanism associated with its high frequency squeal. Complex eigenvalue analysis is carried out and the squeal frequency is correlated. System mode shapes are then processed with an in-house program to calculate modal participation factors based on a complex MAC (Modal Assurance Criteria) algorithm. The coupling mechanism is identified and possible countermeasures are discussed.
Technical Paper

Complex Eigenvalue Analysis for Reducing Low Frequency Brake Squeal

2000-03-06
2000-01-0444
A front disc brake system is used as an example for an investigation of low frequency squeal. Many different modifications to this disc brake system have been proposed and this paper focuses on a solution that reduces the stiffness of the rotor. This is accomplished by a reduction in the Young's modulus of the rotor material. The complex eigenvalue method is used for a detailed analytical study in order to obtain a better understanding of this solution technique. Modal participation factors are calculated to examine the modal coupling mechanism. Parametric studies are also performed to find out the effects of friction coefficient and rotor stiffness. Results show that shifting rotor resonance frequencies may ecouple the modal interaction and eliminate dynamic instability, which is in agreement with experimental results.
Technical Paper

A Sensory Approach to Develop Product Sound Quality Criterion

1999-05-17
1999-01-1818
Product sound quality is becoming increasingly critical in recent years. To help improve customer satisfaction and product quality, Delphi Automotive Systems has taken a proactive approach to address sound quality issues. The first step is to identify customers' expectations. This paper describes a sensory approach to develop sound quality criterion for a power product. To identify critical sound quality characteristics, a large number of sound samples were recorded. Jury (focus group) evaluation was conducted to identify the acceptance level and preference of each sample. Then, critical objective measures, and the criterion level of each measure, were identified via correlation analysis with subjective responses. This article presents a practitioner's point of view on how to apply sensory engineering method to engineering practice.
Technical Paper

High Frequency Effects on Localization and Sound Perception in a Small Acoustic Space

2002-03-04
2002-01-0117
As compared to home audio, the automobile has a different spatial and spectral distribution of sound. This can cause stereo images to blur or shift due to conflicting localization cues. The impact of interaural time and level differences is discussed, along with frequency-selective pinna and head cues. Review of the literature shows that our poorest localization is for mid frequencies (∼2kHz). Yet in an automobile, low frequencies are severely relocated with a minimum effect on fidelity. It is suggested this is because middle frequencies dominate the perception and localization of sound. Therefore, some high frequency information might also be relocated.
X