Refine Your Search

Topic

Author

Search Results

Technical Paper

Challenges in Simulation and Sensor Development for Occupant Protection in Rollover Accidents

2000-11-01
2000-01-C038
Automotive occupant safety continues to evolve. At present this area has gathered a strong consumer interest which the vehicle manufacturers are tapping into with the introduction of many new safety technologies. Initially, individual passive devices and features such as seatbelts, knee- bolsters, structural crush zones, airbags etc., were developed for to help save lives and minimize injuries in accidents. Over the years, preventive measures such as improving visibility, headlights, windshield wipers, tire traction etc., were deployed to help reduce the probability of getting into an accident. With tremendous new research and improvements in electronics, we are at the stage of helping to actively avoid accidents in certain situations as well as providing increased protection to vehicle occupants and pedestrians.
Technical Paper

Dependable E/E System Drivers and Application Issues

2000-11-01
2000-01-C064
Today, electrical/electronic systems like ABS/power brakes and electric power steering are all designed to enhance, not replace a mechanical function. If an electrical or electronic fault occurs, the function reverts to the base mechanical capability. Future E/E systems, such as steer-by-wire and brake-by- wire replace mechanical linkages with electrical or optical signals as in computer networks. While these systems offer many potential safety benefits, they will require different strategies for dependability, and as with any vehicle system, they will further require that dependability be an integral part of the overall E/E system design. This paper illustrates how by-wire systems drive different dependability requirements and discusses some key technologies that are emerging to meet these requirements.
Technical Paper

Sensory Evaluation of Commercial Truck Interiors

1999-03-01
1999-01-1267
Vehicle interior harmony is related to human factors but it deals with human emotional attachment to the product. Kansei, or sensory engineering provides an effective approach to address harmony issues. This paper reports a preliminary investigation of human sensory evaluation of commercial truck interiors, especially the door interiors. To investigate the end users' needs and preference, a questionnaire survey was administered to twenty-six commercial truck drivers. Responses on usability, styling, harmony, and ergonomics issues of each driver's own truck were recorded. Furthermore, a set of 12 semantic differential scales, together with a preference ranking scale, was served to evaluate six truck door interiors. Results show that commercial truck drivers are more concerned with functionality and usability than styling and visual harmony.
Technical Paper

Multi-Sensor Modules with Data Bus Communication Capability

1999-03-01
1999-01-1277
Automotive multi-sensor modules, capable of vehicle-wide communications via a data bus will be discussed. Proper sensor grouping, packaging and device placement are key issues in the implementation of smart sensor modules. Sensors that are candidates for clustering include temperature, acceleration, angular rate, barometric pressure, chemical, and light sensors. The capability to accommodate a variety of data bus communication protocols is required to satisfy the majority of automotive systems. System integration must be considered when employing a smart sensor network through-out an automobile in a cost effective manner. This paper will cover the module issues associated with sensing, packaging, electronics, communication and system integration.
Technical Paper

An Expandable Passive Optical Star Network Architecture for Automotive Applications

1999-03-01
1999-01-0303
When comparing vehicle communication architectures, the passive star network has been shown to be the highest fault tolerant system. Despite this trait, the passive star architecture has not been widely implemented due to its potential application limitations: insufficient node count and relatively short node lengths. These constraints arise from the basic function of the star, i.e. to evenly distribute a given amount of optical power to all nodes connected to the star without amplification or retransmission. This paper provides a solution to overcome the limitations of the passive star through the introduction of a new communication component, the Active Distribution Node (ADN). The ADN enables a passive star network to support larger node counts and significantly longer node lengths, without sacrificing fault tolerance or the low cost nature of the basic passive star architecture.
Technical Paper

US and UK Belted Driver Injuries with and without Airbag Deployments - A Field Data Analysis

1999-03-01
1999-01-0633
This study compares the effect of US and European airbag deployments on injury outcomes for belted drivers in frontal crashes. Driver weight, height and seat track position was also examined in relation to those outcomes. This information may help to prioritize and guide the logic for “Smart” airbags. For the study, only airbag-equipped cars were considered. Two accident databases were used: 1) the weighted and unweighted National Accident Sampling System (NASS-CDS) from the US, calendar years 1995 to 1996, and 2) the unweighted Co-operative Crash Injury Study (CCIS) from the UK, calendar years 1992 to 1998. The parameters investigated were Injury Severity Score (ISS), Equivalent Test Speed (ETS), occupant weight, occupant height and seat location. For US drivers, the injury rate and occurrence were calculated using weighted data, while for UK drivers, the rate and occurrence were obtained using unweighted data.
Technical Paper

An Integrated Approach to Automotive Safety Systems

2000-03-06
2000-01-0346
The industry strategy for automotive safety systems has been evolving over the last 20 years. Initially, individual passive devices and features such as seatbelts, airbags, knee bolsters, crush zones, etc. were developed for saving lives and minimizing injuries when an accident occurs. Later, preventive measures such as improving visibility, headlights, windshield wipers, tire traction, etc. were deployed to reduce the probability of getting into an accident. Now we are at the stage of actively avoiding accidents as well as providing maximum protection to the vehicle occupants and even pedestrians. Systems that are on the threshold of being deployed or under intense development include collision detection / warning / intervention systems, lane departure warning, drowsy driver detection, and advanced safety interiors.
Technical Paper

Comparison of Air Meter Interface Strategies for Engine Management Systems

2000-03-06
2000-01-0546
When an air meter is specified for an engine management system, air meter accuracy is given high priority. Air meter manufacturers characterize the accuracy of their products using laboratory instrumentation to measure the air meter output vs. flow characteristics. Ultimately the air meter is applied to an engine management system in a vehicle. The engine management system must use the information provided by the air meter without the benefit of laboratory instrumentation. Therefore, the entire measurement system must be considered in evaluating the effective accuracy. The most fundamental aspect to consider is the output signal format between the air meter and the engine management system. Two commonly available formats will be investigated: frequency and voltage.
Technical Paper

Delphi Electronic Throttle Control Systems for Model Year 2000;Driver Features, System Security, and OEM Benefits. ETC for the Mass Market

2000-03-06
2000-01-0556
Delphi has developed a second-generation Electronic Throttle Control system optimized for high volume applications. The Delphi system integrates several unique driver performance features, extensive security/diagnostics, and provides significant benefits for the vehicle manufacturer. For Model Year 2000, the Delphi ETC system has been successfully implemented on several popular SUVs and passenger cars built and sold around the world. The ETC driver features, security systems, and manufacturer benefits are presented as implemented on these Model Year 2000 applications.
Technical Paper

Implementation of Lead-Free Solder for Automotive Electronics

2000-03-06
2000-01-0017
Lead-free solders for electronics have been actively pursued since the early 1990's here and abroad for environmental, legislative, and competitive reasons. The National Center for Manufacturing Sciences (NCMS-US)1, the International Tin Research Institute (ITRI-UK)2, Swedish Institute of Production Engineering Research (IVF-Sweden)3, Japan Institute of Electronics Packaging (JIEP Japan)4, Improved Design Life and Environmentally Aware Manufacture of Electronics Assemblies by Lead-free Soldering (IDEALS-Europe)5, and, more recently, the National Electronics Manufacturing Initiative (NEMI-US)6 have been aggressively seeking lead-free solutions The automotive industry has some unique requirements that demand extensive testing of new materials and processes prior to implementation. The specific steps taken at Delphi Automotive Systems with lead-free solder will be described along with the lessons learned along the way.
Technical Paper

A System-Safety Process For By-Wire Automotive Systems

2000-03-06
2000-01-1056
Steer-by-wire and other “by-wire” systems (as defined in the paper) offer many passive and active safety advantages. To help ensure these advantages are achieved, a comprehensive system-safety process should be followed. In this paper, we review standard elements of system safety processes that are widely applied in several industries and describe the main elements of our proposed analysis process for by-wire systems. The process steps include: (i) creating a program plan to act as a blueprint for the process, (ii) performing a variety of hazard analysis and risk assessment tasks as specified in the program plan, (iii) designing and verifying a set of hazard controls that help mitigate risk, and (iv) summarizing the findings. Vehicle manufacturers and suppliers need to work together to create and follow such a process. A distinguishing feature of the process is the explicit linking of hazard controls to the hazards they cover, permitting coverage-based risk assessment.
Technical Paper

Diagnostic Development for an Electric Power Steering System

2000-03-06
2000-01-0819
Electric power steering (EPS) is an advanced steering system that uses an electric motor to provide steering assist. Being a new technology it lacks the extensive operational history of conventional steering systems. Also conventional systems cannot be used to command an output independent of the driver input. In contrast EPS, by means of an electric motor, could be used to do so. As a result EPS systems may have additional failure modes, which need to be studied. In this paper we will consider the requirements for successful EPS operation. The steps required to develop diagnostics based on the requirements are also discussed. The results of this paper have been implemented in various EPS-based programs.
Technical Paper

Comfort and Usability of the Seat Belts

2001-03-05
2001-01-0051
Seat belts are the primary occupant-protection devices for vehicle crashes. Field statistics show that proper usage of seat belts substantially contributes to decreases in the fatality rate and injury level. To collect first-hand information regarding seat belt comfort and usability, a questionnaire survey was conducted. The most significant problems were found as belt trapping in the door, awkward negotiating with clothes, belt twisting, belt locking up, and difficulty to locate the buckle. The survey results indicated that drivers who are over 40 years old have more complaints than younger drivers. When the driver's age increases to 55 and above, belt pulling force and inappropriate and loose fitting of the belt on the body become major issues. Female drivers have more complaints than male drivers. Short statured drivers need both hands to pull and guide the retracting of the belt.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Technical Paper

Kansei Engineering Application on Commercial Truck Interior Design Harmony

2000-12-04
2000-01-3412
Vehicle interior harmony has drawn increasing attention from customers in recent years. Kansei Engineering is an effective approach to quantify the relationship between design parameters and customer perceptions of the product. This article is a continuation of our previous study on commercial truck interior harmony. Herein, we investigated the customer perception of the visual aspects of commercial truck door interior design using classification methods. This article describes how these visual impressions are related to design elements using quantification theory, a commonly used method in Kansei Engineering. The results reveal that trim material, shape, color, window shape, and map pocket are design elements that strongly affect the perception of elegance and preferences of truck drivers. The results also showed a significant difference between the perception of the truck drivers and design engineers.
Technical Paper

Single Crystal Silicon Low-g Acceleration Sensor

2002-03-04
2002-01-1080
A single-crystal silicon capacitive acceleration sensor for low-g applications has been developed. The sensor element itself is formed entirely from single crystal silicon, giving it exceptional stability over time and temperature and excellent shock resistance. The sensor is produced using low-cost, high volume processing, test and calibration. The sensor integrated circuit (IC) contains a proofmass which moves in response to applied accelerations. The position of the proofmass is capacitively detected and processed by an interface IC. The sensor/interface IC system is packaged in a small outline IC (SOIC) package for printed circuit board mounting. The module is designed to measure full scale accelerations in the 0.75g to 3g range to suit a variety of automotive, industrial and consumer applications
Technical Paper

Enhanced Vehicle Stability with Engine Drag Control

2002-03-04
2002-01-1217
This paper describes the development and implementation of an Engine Drag Control algorithm to improve vehicle stability performance. Engine drag can occur on low and high coefficient surfaces when the driver suddenly releases the throttle. If the engine drag force becomes larger than the frictional force between the tire and the road, the tires will break loose from the surface and slip. This could induce vehicle instability especially with rear drive vehicles on low-coefficient surfaces. The EDC algorithm has been developed to provide accurate control of the wheels. EDC will help reduce the yaw rate of the vehicle and thus achieve greater vehicle stability. The paper also presents methods used to test the robustness of such a system. The purpose of the testing was to ensure that there would be no false activations of EDC under normal driving conditions and also to ensure that, when the system is active, it is mostly transparent to the driver.
Technical Paper

Development Experience with Steer-by-Wire

2001-08-20
2001-01-2479
Recent advances in dependable embedded system technology, as well as continuing demand for improved handling and passive and active safety improvements, have led vehicle manufacturers and suppliers to actively pursue development programs in computer-controlled, by-wire subsystems. These subsystems include steer-by-wire and brake-by-wire, and are composed of mechanically de-coupled sets of actuators and controllers connected through multiplexed, in-vehicle computer networks; there is no mechanical link to the driver. This paper addresses fundamental benefits and issues of steer-by-wire, especially those related to automated vehicle control and steering feel quality as perceived by the driver.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
X