Refine Your Search

Topic

Author

Search Results

Technical Paper

Reliability of Resonant Micromachined Sensors and Actuators

2001-03-05
2001-01-0618
There are an increasing number of applications for resonant micromachines. Accelerometers, angular rate sensors, voltage controlled oscillators, pressure and chemical sensors have been demonstrated using this technology. Several of these devices are employed in vehicles. Vibrating devices have been made from silicon, quartz, GaAs, nickel and aluminum. Resonant microsystems are in constant motion and so present new challenges in the area of reliability for vehicular applications. The impact of temperature extremes, cyclic fatigue, stiction, thermal and mechanical shock on resonant device performance is covered.
Technical Paper

LIN Bus and its Potential for Use in Distributed Multiplex Applications

2001-03-05
2001-01-0072
The increasing features and complexity of today's automotive architectures are becoming increasingly difficult to manage. Each new innovation typically requires additional mechanical actuators and associated electrical controllers. The sheer number of black boxes and wiring are being limited not by features or cost but by the inability to physically assemble them into a vehicle. A new architecture is required which will support the ability to add new features but also enable the Vehicle Assembly Plants to easily assemble and test each subsystem. One such architecture is a distributed multiplex arrangement that reduces the number of wires while enabling flexibility and expandability. Previous versions have had to deal with issues such as noise immunity at high switching currents. The LIN Bus with its low cost and rail-to-rail capability may be the key enabling technology to make the multiplexed architecture a reality.
Technical Paper

Consumers, Electronics, and the Link to Hybrid Vehicles and the Environment

2000-11-01
2000-01-C045
The interdependence of consumer features, new electronic and electrical architectures and hybrid propulsion systems are examined. There are two major forces driving future vehicle electronic and electrical systems, one is consumer demand for comfort and safety, and two is the demand for reduced fuel consumption and emissions. These forces are linked by the use of electronics to control vehicle energy generation and usage while providing managed solutions to these demands. Automobile consumer features are discussed and the case is made that these features will require more electric power to be installed on the vehicle. The presence of this increased electric power will then enable the hybrid vehicle functions that will benefit fuel economy and emissions performance.
Technical Paper

Smart Sensors for Future Robust Systems

2000-11-01
2000-01-C055
"Smart'' sensor concepts must be considered as the demands of advanced automotive systems increase. These concepts are strongly influenced by the architectural and dependability aspects of future systems. Key features of smart sensors are: communication (two way) with a digital data bus, self- calibration, error source compensation, self-diagnostics, and programmability for "plug and play.'' This paper contains a discussion of the basic future sensor requirements, and it assesses four major sensor technologies with respect to their suitability to meet these requirements. For each technology, the merits and demerits will be reviewed and an example sensing application will be given in order to demonstrate how the technology can be adapted to meet the future requirements.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Paradigm Shift in Electric Supply for Transportation

2000-11-01
2000-01-C070
Delphi Automotive Systems and BMW have been jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC-based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness.
Technical Paper

Dependable E/E System Drivers and Application Issues

2000-11-01
2000-01-C064
Today, electrical/electronic systems like ABS/power brakes and electric power steering are all designed to enhance, not replace a mechanical function. If an electrical or electronic fault occurs, the function reverts to the base mechanical capability. Future E/E systems, such as steer-by-wire and brake-by- wire replace mechanical linkages with electrical or optical signals as in computer networks. While these systems offer many potential safety benefits, they will require different strategies for dependability, and as with any vehicle system, they will further require that dependability be an integral part of the overall E/E system design. This paper illustrates how by-wire systems drive different dependability requirements and discusses some key technologies that are emerging to meet these requirements.
Technical Paper

Maximum Electrical Energy Availability With Reasonable Components

2000-11-01
2000-01-C071
The electric power required in automotive systems is quickly reaching a level that significantly impacts costs and fuel consumption. This drives the need to reconsider an electric energy management function. Fast evolving factors such as increasing power usage, and stricter engine management and reliability requirements necessitate a global vehicle approach to energy management. Innovations such as new powernet concepts (42 volt or dual voltage systems), new component technologies (high-performance energy storage, high efficiency and controllable generators), and global electronic and software architecture concepts will enable this new energy management concept. This paper describes key issues to maximize energy availability with reasonable components.
Technical Paper

Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System

2000-03-06
2000-01-0817
This paper investigates a method for improving vehicle stability by incorporating feedback from a yaw rate sensor into an electric power steering system. Presently, vehicle stability enhancement techniques are an extension of antilock braking systems in aiding the driver during vehicle maneuvers. One of the contributors to loss of vehicle control is the reduction in tactile feedback from the steering handwheel when driving on wet or icy pavement. This paper presents research indicating that the use yaw rate feedback improves vehicle stability by increasing the amount of tactile feedback when driving under adverse road conditions.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
Technical Paper

Development of Electrical-Electronic Controls for a Gasoline Direct Injection Compression Ignition Engine

2016-04-05
2016-01-0614
Delphi is developing a new combustion technology called Gasoline Direct-injection Compression Ignition (GDCI), which has shown promise for substantially improving fuel economy. This new technology is able to reuse some of the controls common to traditional spark ignition (SI) engines; however, it also requires several new sensors and actuators, some of which are not common to traditional SI engines. Since this is new technology development, the required hardware set has continued to evolve over the course of the project. In order to support this development work, a highly capable and flexible electronic control system is necessary. Integrating all of the necessary functions into a single controller, or two, would require significant up-front controller hardware development, and would limit the adaptability of the electronic controls to the evolving requirements for GDCI.
Technical Paper

Flawless Manufacturing of RACam through XCP Protocol

2016-04-05
2016-01-0047
RACam [1] is an Active Safety product designed and manufactured at Delphi and is part of their ADAS portfolio. It combines two sensors - Electronically Scanned RADAR and Camera in a single package. RADAR and Vision fusion data is used to realize safety critical systems such as Adaptive Cruise Control (ACC), Autonomous Emergency Braking (AEB), Lane Departure Warning (LDW), Lane Keep Assist (LKA), Traffic Sign Recognition (TSR) and Automatic Headlight Control (AHL). Figure 1 RACam Front View. With an increase in Active Safety features in the automotive market there is also a corresponding increase in the complexity of the hardware which supports these safety features. Delphi’s hardware design for Active Safety has evolved over the years. In Delphi’s RACam product there are a number of critical components required in order to realize RADAR and Vision in a single package. RACam is also equipped with a fan and heater to improve the operating temperature range.
Technical Paper

Barometric Pressure Estimator for Production Engine Control and Diagnostics

1999-03-01
1999-01-0206
A Barometric Pressure Estimator (BPE) algorithm was implemented in a production speed-density Engine Management System (EMS). The BPE is a model-based, easily calibrated algorithm for estimating barometric pressure using a standard set of production sensors, thereby avoiding the need for a barometric pressure sensor. An accurate barometric pressure value is necessary for a variety of engine control functions. By starting with the physics describing the flow through the induction system, an algorithm was developed which is simple to understand and implement. When used in conjunction with the Pneumatic and Thermal State Estimator (PSE and TSE) algorithms [2], the BPE requires only a single additional calibration table, generated with an automated processing routine, directly from measured engine data collected at an arbitrary elevation, in-vehicle or on a dynamometer. The algorithm has been implemented on several different engines.
Technical Paper

Individual Cylinder Fuel Control with a Switching Oxygen Sensor

1999-03-01
1999-01-0546
In this paper we discuss in detail an algorithm that addresses cylinder-to-cylinder imbalance issues. Maintaining even equivalence-ratio (ϕ) control across all the cylinders of an engine is confounded by imbalances which include fuel-injector flow variations, fresh-air intake maldistribution and uneven distribution of Exhaust Gas Re-circulation (EGR). Moreover, in markets that are growing increasingly cost conscious, with ever tightening emissions regulations, correcting for such mismatches must not only be done, but done at little or no additional cost. To address this challenge, we developed an Individual Cylinder Fuel Control (ICFC) algorithm that estimates each cylinder's individual ϕ and then compensates to correct for any imbalance using only existing production hardware. Prior work in this area exists1,2, yet all disclosed production-intent work was performed using wide-range oxygen sensors, representing cost increases.
Technical Paper

Closed Loop Start of Combustion Control Utilizing Ionization Sensing in a Diesel Engine

1999-03-01
1999-01-0549
This paper describes the technique of in-cylinder ionization sensing in a common rail diesel engine. The technology detects in real time, the start of combustion for both pilot and main combustion enabling the fuel control strategy to change from open to closed loop, thus, maintaining the desired start of combustion for all speeds and loads. Additionally, the ionization sensing enables the ECM to truly correct for changes in ignition delays caused by as an example a change in fuel cetane number or in air, fuel and engine temperature. The conclusions are that ionization sensing improves the ability to control a diesel engine and is a feasible technology for production vehicles.
Technical Paper

Powertrains of the Future: Reducing the Impact of Transportation on the Environment

1999-03-01
1999-01-0991
Tomorrow's winning powertrain solutions reside in those technology combinations providing optimized propulsion systems with zero emissions and no cost or performance penalty compared with today's vehicles. The recent Kyoto Protocol for CO2 reduction and the California Air Resources Board (CARB) thrust for zero emission vehicles along with the European Regulatory community, motivate car manufacturers to adopt new light body structures with low aerodynamic drag coefficients, low-rolling resistance and the highest efficiency powertrains. The environmental equation expresses car manufacturers aptitude and desire to create zero emission vehicles at acceptable levels of performance unlike limited range electrical powered vehicle products. The cheapest solution to the environmental equation remains the conventional internal combustion engine ($30 to $50 per kW).
Technical Paper

Electronic Suspension System Control Utilizing ABS System Wheel Speed Sensors

1999-12-01
1999-01-3079
This paper describes a semi-active damping control system that responds in real-time to road and driving conditions based on body motions as determined through ABS wheel speed sensors. The use of these existing sensors for vehicle information eliminates the need for the additional sensors (e.g. accelerometers and body-to-wheel position/velocity sensors) that are commonly part of semi-active suspension systems. This technology also allows for further cost and part count reductions through the combination of the suspension and brake controls into a single electronic control unit. This paper has been previously presented in 1998 at the SAE Controlled Suspension System Toptec.
Technical Paper

Advanced Engine Management Using On-Board Gasoline Partial Oxidation Reforming for Meeting Super-ULEV (SULEV) Emissions Standards

1999-08-17
1999-01-2927
This paper first reports on the benchmarking of a gasoline- fueled vehicle currently for sale in California that is certified to ULEV standards. Emissions data from this vehicle indicate the improvements necessary over current technology to meet SULEV tailpipe standards. Tests with this vehicle also show emissions levels with current technology under off-cycle conditions representative of real-world use. We then present Delphi's strategy of on-board partial oxidation (POx) reforming with gasoline-fueled, spark-ignition engines. On-board reforming provides a source of hydrogen fuel. Tests were run with bottled gas simulating the output of a POx reformer. Results show that an advanced Engine Management System with a small on-board reformer can provide very low tailpipe emissions both under cold start and warmed-up conditions using relatively small amounts of POx gas. The data cover both normal US Federal Test Procedure (FTP) conditions as well as more extreme, off-cycle operation.
Technical Paper

Flow Simulation of a Direct-Injection Gasoline Diaphragm Fuel Pump with Structural Interactions

2000-03-06
2000-01-1047
The fluid flow in a direct-injection gasoline diaphragm fuel pump is analyzed using a multi-physics simulation program. The analysis accounts for fully coupled fluid-structure interactions (FSI), the effects of the diaphragm movement and its deformation, the FSI between the diaphragm and the fluid, the FSI between the inlet/outlet valves and the fluid, and the solid-solid contact between the inlet/outlet valves and the valve seats. The flow rate of the fuel pump under various cam speeds is examined. The accuracy of the predictions for the flow rate of the fuel pump is assessed through comparisons with the experimental data, and moderately good agreement is obtained. In addition, some conclusions based on this study are summarized for reference.
Technical Paper

Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

2000-08-21
2000-01-3088
With new legislation and federal regulation for vehicle emission levels, automotive and truck manufacturers have been prompted to focus on emission control technologies that limit the level of exhaust pollutants. One of the primary pollutants, especially from diesel engines, is oxides of nitrogen (NOx). One possible solution to this pollution challenge is to design a more efficient internal combustion engine, which would require better engine operating parameter controls. However, there are limitations associated with such tight engine management. This need has led researchers and engineers to focus on the development of exhaust aftertreatment devices that will reduce NOx emissions with current diesel engines. An optimum aftertreatment device must be unaffected by exhaust-gas impurity poisoning such as sulfur products, and must have minimal impact on vehicle operations and fuel economy.
X