Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

Dual SCR Aftertreatment for Lean NOx Reduction

2009-04-20
2009-01-0277
Low-cost lean NOx aftertreatment is one of the main challenges facing high-efficiency gasoline and diesel engines operating with lean mixtures. While there are many candidate technologies, they all offer tradeoffs. We have investigated a multi-component Dual SCR aftertreatment system that is capable of obtaining NOx reduction efficiencies of greater than 90% under lean conditions, without the use of precious metals or urea injection into the exhaust. The Dual SCR approach here uses an Ag HC-SCR catalyst followed by an NH3-SCR catalyst. In bench reactor studies from 150 °C to 500 °C, we have found, for modest C/N ratios, that NOx reacts over the first catalyst to predominantly form nitrogen. In addition, it also forms ammonia in sufficient quantities to react on the second NH3-SCR catalyst to improve system performance. The operational window and the formation of NH3 are improved in the presence of small quantities of hydrogen (0.1–1.0%).
Journal Article

Analysis of Pre-Crash Data Transferred over the Serial Data Bus and Utilized by the SDM-DS Module

2011-04-12
2011-01-0809
The primary function of an airbag control module is to detect crashes, discriminate and predict if a deployment is necessary, then deploy the restraint systems including airbags and where applicable, pretensioners. At General Motors (GM), the internal term for airbag control module is Sensing and Diagnostic Module (SDM). In the 1994 model year, GM introduced its SDM on some of its North American airbag-equipped vehicles. A secondary function of that SDM and all subsequent SDMs is to record crash related data. This data can include data regarding impact severity from internal accelerometers and pre-crash vehicle data from various chassis and powertrain modules. Previous researchers have addressed the accuracy of both the velocity change data, recorded by the SDM, and the pre-crash data, but the assessment of the timing of the pre-crash data has been limited to a single family of modules (Delphi SDM-G).
Journal Article

Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions

2011-04-12
2011-01-1386
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

Evaluation of the MADYMO Full FE Human Model in a Rear Impact Simulation of an IndyCar

2006-12-05
2006-01-3659
Computer simulation was used as a complement to crash and injury field data analysis and physical sled and barrier tests to investigate and predict the spinal injuries of a rear impact in an IndyCar. The model was expected to relate the spinal loads to the observed injuries, thereby predicting the probability and location of spinal fractures. The final goal is to help reduce the fracture risk by optimizing the seat and restraint system design and the driver's position using computer modeling and sled testing. MADYMO Full FE Human Body Model (HBM) was selected for use because of its full spinal structural details and its compatibility with the vehicle and restraint system models. However, the IndyCar application imposed unique challenges to the HBM. First, the driver position in a race car is very different from that in a typical passenger car.
Technical Paper

Design of an Automotive Grade Controller for In-Cylinder Pressure Based Engine Control Development

2007-04-16
2007-01-0774
This paper describes a new tool to capture cylinder pressure information, calculate combustion parameters, and implement control algorithms. There are numerous instrumentation and prototyping systems which can provide some or all of this capability. The Cylinder Pressure Development Controller (CPDC) is unique in that it uses advanced high volume automotive grade circuitry, packaging, and software methodologies. This approach provides insight regarding the implementation of cylinder pressure based controls in a production engine management system. A high performance data acquisition system is described along with a data reduction technique to minimize data processing requirements. The CPDC software architecture is discussed along with model-based algorithm development and autocoding. Finally, CPDC calculated combustion parameters are compared with those from a well established combustion analysis system and thermodynamic simulations.
Technical Paper

Cylinder Pressure-Based Control of Pre-Mixed Diesel Combustion

2007-04-16
2007-01-0773
Implementation of real-time combustion feedback for use in closed-loop combustion control is a technology that has potential to assist in the successful production implementation of advanced diesel combustion modes. Low-temperature, pre-mixed diesel combustion is presently of interest because it offers the ability to lower the engine-out emissions of oxides of nitrogen (NOx) and particulate matter (PM). The need for lowering these two emissions is driven by tighter regulations enacted worldwide, especially the NOx limits in the United States. Reducing engine-out emissions eases the need for additional exhaust aftertreatment devices and their associated cost and mass. In this paper we will describe an experimental cylinder pressure-based control system and present both steady-state and transient results from a diesel engine employing a pre-mixed type of combustion.
Technical Paper

Non-Intrusive Engine Speed Sensor

2007-04-16
2007-01-0960
In the field of vehicle diagnostics accurate instantaneous engine speed information enables the detection and diagnosis of many engine problems, even subtle ones. Currently, there is a limited choice in the ways of obtaining such information. For example, it is known that one can tap into the crank sensor wiring, or use a separate, intrusive method, such as mounting a sensor in the bell housing to sense the rotation of the ring gear. However, the shortcomings of these approaches are locating and gaining access to the crank sensor connector, the location of which varies from vehicle to vehicle. Thus, authors proposed a novel, robust and manufacturing friendly speed sensor. The concept is based on the Villari effect. The sensor, which is attached to the front end of the engine crankshaft, consists of a coil of magnetostrictive wire supplied with AC current. During engine rotation the magnetostrictive wire become stressed due to centrifugal force.
Technical Paper

Design and Development of a 2-Step Rocker Arm

2007-04-16
2007-01-1285
2-Step variable-valve lift and timing is a high-value technology for the further development of automotive internal combustion engines. 2-Step valve train systems provide improved engine efficiency, emissions, and performance using components that are relatively low-cost and compatible with new and existing cylinder heads. This paper describes the design and development of a 2-Step rocker arm using a combination of analytical tools and physical testing. Prototype hardware was built to confirm the design. Performance and durability test results are presented.
Technical Paper

Co-Simulation Analysis of Transient Response and Control for Engines with Variable Valvetrains

2007-04-16
2007-01-1283
Modern engines are becoming highly complex, with several strongly interactive subsystems - - variable cam phasers on both intake and exhaust, along with various kinds of variable valve lift mechanisms. Isolated component models may not yield adequate information to deal with system-level interactive issues, especially when it comes to transient behavior. In addition, massive amounts of expensive experimental work will be required for optimization. Recent computing speed improvements are beginning to permit the use of co-simulation to couple highly detailed and accurate submodels of the various engine components, each created using the most appropriate available simulation package. This paper describes such a system model using GT-Power to model the engine, AMESim to model cam phasers and the engine lubrication system, and Matlab/Simulink to model the engine controllers and the vehicle.
Technical Paper

Throttle Icing: Understanding the Icing Mechanism and Effects of Various Throttle Features

2008-04-14
2008-01-0439
Some Electronic Throttle Control (ETC) Air Control Valves (ACV) on automotive internal combustion engines are susceptible to icing of the throttle valve. Ice formation can result in an increase in torque required to open or close the valve. Laboratory studies were conducted to improve the understanding of throttle valve icing on electronic throttle control valves with both aluminum and composite (plastic) bodies over various bore sizes (4 cylinder to 8 cylinder engines). Study results indicated that ice compression at the bore and valve gap, not ice adhesion, is the major contributor to the ETC-ACV icing phenomenon. In addition, testing of parts with various bore sizes, orientations and surface cleanliness resulted in further understanding of the icing issue.
Technical Paper

Impact of Biodiesel Emission Products from a Multi-Cylinder Direct Injection Diesel Engine on Particulate Filter Performance

2009-04-20
2009-01-1184
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
Technical Paper

An Analytical and Experimental Study of a High Pressure Single Piston Pump for Gasoline Direct Injection (GDi) Engine Applications

2009-04-20
2009-01-1504
In recent years, gasoline direct injection (GDi) engines have been popular due to their inherent potential for reduction of exhaust emissions and fuel consumption to meet stringent EPA standards. These engines require high-pressure fuel injection in order to improve the atomization process and accelerate mixture preparation. The high-pressure fuel pump is an essential component in the GDi system. Therefore, understanding the flow characteristics of this device and its associated behavior is critical for improving the performance of this category of engines. In this paper, the fluid flow characteristics in a high-pressure single-piston pump for use in GDi engines are analyzed using 1-D LMS Imagine.Lab AMESim system and 3-D Ansys Fluent computational fluid dynamics (CFD) models. The flow rate of the fuel pump under various cam speeds has been examined along with characteristics of the pump's control valve.
Technical Paper

Spray Pattern Recognition for Multi-Hole Gasoline Direct Injectors Using CFD Modeling

2009-04-20
2009-01-1488
This paper describes a correlation study on fuel spray pattern recognition of multi-hole injectors for gasoline direct injection (GDi) engines. Spray pattern is characterized by patternation length, which represents the distance of maximum droplet concentration from the axis of the injector. Five fuel injectors with different numbers and sizes of nozzle holes were considered in this study. Experimental data and CFD modeling results were used separately to develop regression models for spray patternation. These regressions predicted the influence of a number of injector operating and design parameters, including injection system operating pressure, valve lift, injector hole length-to-diameter ratio (L/d) and the orientation of the injector hole. The regression correlations provided a good fit with both experimental and CFD spray simulation results. Thus CFD offers a good complement to experimental validation during development efforts to meet a desired injector spray pattern.
Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Technical Paper

A Strategy to Partition Crash Data to Define Active-Safety Sensors and Product Solutions

2008-10-20
2008-21-0032
Both Crash-Avoidance and Pre-Crash active safety technologies are being developed to help reduce the number of crashes and minimize the severity of crashes. The root basis in the development of new and improved active safety technologies always begins with gaining further knowledge about crash kinds and causes. The dynamics of crashes are quite complex. The evolving precursor crash situation initiated in the Crash-Avoidance time-period will vary from the imminent crash situation in the Pre-Crash time-period. As such, in order to develop the appropriate requirements for both crash-avoidance and pre-crash technologies, they must be analyzed from their respective crash data. A data-driven methodology process has been developed which partitions the field data with a perspective to crash-avoidance and pre-crash.
Technical Paper

Controller for Rapid Development of Advanced Mode Combustion Algorithms using Cylinder Pressure Feedback

2008-10-20
2008-21-0015
Worldwide regulatory demands to reduce emissions of greenhouse gases and other airborne pollutants are leading to significant changes in internal combustion engines. Many engine subsystems such as fuel injection, valvetrain, turbochargers and EGR, are being changed to address these demands. Additionally, advanced combustion modes such as HCCI are being pursued to address the key shortcomings of today's gasoline and diesel engines. Cylinder pressure based control is an enabling technology to the development and application of advanced engine subsystems and a key control element for advanced combustion modes. This paper describes a tool for rapid development of closed-loop cylinder pressure based algorithms. The Cylinder Pressure Development Controller (CPDC) is an affordable, automotive grade package containing a unique architecture enabling real-time, next engine cycle combustion feedback control.
Technical Paper

A Comparative Study of the Production Applications of Hybrid Electric Powertrains

2003-06-23
2003-01-2307
In this paper, a comparative study of the production applications of hybrid electric powertrains is presented. Vehicles studied include the Toyota Prius, Honda Insight, Toyota Estima, Toyota Crown, Honda Civic Hybrid, and Nissan Tino. The upcoming Ford Escape Hybrid and General Motors Parallel Hybrid Truck (PHT) will also be included, although advance information is limited. The goal of this paper is to look at what hybrid drivetrain architectures have actually been selected for production and what are the underlying details of these drivetrains. Since hybridizing a powertrain involves significant changes, the powertrain architectures are presented in diagram form, with analysis as to the similarities and advantages represented in these architectures. The specific hybrid functions used to save fuel are discussed. Peak power-to-weight ratio and degree of hybridization are plotted for the vehicles. System voltage versus electric power level are also plotted and analyzed.
X