Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Influence of an On Line Heated Lubricating Oil Recycler on Emissions from an IDI Passenger Car Diesel as a Function of Oil Age

A method of cleaning diesel engine lubricating oil on-line was investigated using a bypass fine particulate filter followed by an infra-red heater to remove water vapour and light diesel fractions in the oil. The impact of this oil recycler on the gaseous and particulate emissions was investigated over a 300 hour oil age period. A Ford 1.8 litre IDI passenger car diesel engine was used with engine out emission sampled every 15-20 hours. The tests were carried out at 2500rpm (52% of the maximum speed) and 12.3 kW with 47 Nm load (43% of the maximum load and 29% of the maximum power). The EGR level at this condition was 15%. A stop start test cycle was used with a cold start each time and a typical test period of 2-3 hours. The results showed that the recycler had its greatest influence on emissions for fresh oil when there was a large reduction in particulate emissions due mainly to large reductions in the ash, carbon and unburned lubricating oil fractions.
Technical Paper

Influence of Catalyst and Exhaust System on Particulate Deposition and Release from an IDI Diesel Passenger Car under Real World Driving

The influence of a diesel oxidation catalyst and a practical exhaust system with two silencers on the storage and release of particulates during cold start real world driving was investigated using a Ford 1.8 litre IDI Mondeo diesel passenger car. Particulates were sampled simultaneously at three points in the exhaust using an on-board gravimetric filter paper method. The test was carried out on two different on-road driving cycles: a simulated ECE 15 cycle to represent free moving low power city driving conditions, and a traffic jam and high speed suburban driving cycle. The results showed that the particulate matter was deposited in the oxidation catalyst during cold start and deposited in the exhaust system downstream of the catalyst throughout the test period. The particulate deposition and release downstream of the catalyst were influenced by the previous operational history of the vehicle.
Technical Paper

The Influence of an Oil Recycler on Emissions with Oil Age for a Refuse Truck Using in Service Testing

A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 1 emissions compliance refuse trucks, fitted with Perkins Phazer 210Ti 6 litre turbocharged intercooled engines and coded as RT320 and RT321. These vehicles had emissions characteristics that were significantly different, in spite of their similar age and total mileage. RT321 showed an apparent heavier black smoke than RT320. Comparison was made with the emissions on the same vehicles and engines with and without the on-line bypass oil recycler. Engine exhaust emissions were measured about every 400 miles. Both vehicles started the test with an oil drain and fresh lubricating oil.