Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Suspension Kinematic/Compliance Uncertain Optimization Using a Chebyshev Polynomial Approach

2015-04-14
2015-01-0432
The optimization of vehicle suspension kinematic/compliance characteristics is of significant importance in the chassis development. Practical suspension system contains many uncertainties which may result from poorly known or variable parameters or from uncertain inputs. However, in most suspension optimization processes these uncertainties are not accounted for. This study explores the use of Chebyshev polynomials to model complex nonlinear suspension systems with interval uncertainties. In the suspension model, several kinematic and compliance characteristics are considered as objectives to be optimized. Suspension bushing characteristics are considered as design variables as well as uncertain parameters. A high-order response surface model using the zeros of Chebyshev polynomials as sampling points is established to approximate the suspension kinematic/compliance model.
Technical Paper

Analysis on Synchronizer of Manual Transmission using Finite Element Analysis

2015-04-14
2015-01-1148
A simulation model of the single cone synchronizer is presented using the dynamic implicit algorithm with commercial Finite Element Analysis (FEA) software Abaqus. The meshing components include sleeve gear, blocking ring and clutch gear, which are all considered as deformation body. The processes mainly contain the contact between sleeve teeth and blocking teeth, meshing period and the impact of sleeve teeth and clutch gear teeth, and these nonlinear contact steps are realized with Abaqus. In addition, a shift force derives from experiment is applied to the sleeve ring, and a moment is added to the clutch gear to realize the relative rotational speed. Based on the FEA model, the effect of the varied frictional coefficients between the cone surfaces of blocking ring and clutch gear on the synchronizer time and contact stress is discussed. Variation of stresses and contact force with respect to time are evaluated from this analysis.
X