Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Technical Paper

Distribution of Vapor Concentration in a Diesel Spray Impinging on a Flat Wall by Means of Exciplex Fluorescence Method -In Case of High Injection Pressure-

1997-10-01
972916
Diesel sprays injected into a combustion chamber of a small sized high-speed CI engine impinge surely on a piston surface and a cylinder wall. As a consequence, their vaporization, mixture formation and combustion processes are affected by impingement phenomena. And the other important factors affecting on the processes is the injection pressure. Then, the distribution of the vapor concentration in a single diesel spray impinging on a flat and hot wall was experimented by the exciplex fluorescence method, as a simple case. The injection pressure was varied in the range from 55 MPa to 120 MPa. It is found that the distribution of the vapor concentration in this case is much leaner than that in the case of the low injection pressure of 17.8MPa.
Technical Paper

Controlling PCCI Combustion with Mixed Fuel - Application of Flashing Spray to Early Injection

2007-04-16
2007-01-0624
A diesel engine operating in premixed charge compression ignition (PCCI) mode promises the reduction of engine-out emissions of NOx and particulate matter. A serious issue for PCCI operation with the early injection timing during the compression stroke is the difficulty of controlling the mixture formation process. In this study, a mixed fuel consisting of high volatility fuel and high ignitability one is applied in order to develop a control technique for the mixture preparation. In particular, we focuses on a flash boiling phenomenon of mixed fuel. For pure substance, the quality of flashing spray is dominated by the degree of superheat. In contrast, that of mixed fuel is affected much by low boiling point fuel.
Technical Paper

Soot formation/oxidation and fuel-vapor concentration in a DI diesel engine using laser-sheet imaging method

2000-06-12
2000-05-0078
Four kinds of optical measurements were performed to investigate the process of soot formation and oxidation in a direct-injection (DI) diesel engine. Measurements were carried out in an optically accessible DI diesel engine that allows planar laser sheet for combustion diagnostics to enter the combustion chamber either horizontally or along the axis of the fuel jet. The temporal and spatial distribution of soot particles has been investigated using the laser- induced incandescence (LII) and high-speed direct photography. Fuel vapor concentration, which is directly linked to the soot formation process in diesel combustion, has been deduced from the images obtained by the measurements of laser shadowgraph and elastic Mie scattering. According to the experimental results, soot formation begins to occur near the injector nozzle in which a fuel-rich mixture is distributed with a homogeneous condition. LII signal is dominated by the fuel vapor concentration in initial combustion period.
Technical Paper

Distribution of Vapor Concentration of Fuel Mixed with High Volatility Component and Low Volatility Component

2010-10-25
2010-01-2274
The premixed charge compression ignition (PCCI) combustion in a compression ignition (Cl) engine is one of countermeasures against the very much severe regulation for exhaust gas of engine out. The authors have been proposed to use the fuel mixed with high volatility component and low volatility component to actualize PCCI combustion. This kind of fuel injected forms a fine and lean spray by the flash boiling phenomena which depends on the pressure and the temperature. The role of the former fuel is to decrease in the generation of particulate matters (PM) and that of the latter one is to break out the ignition. Thus, it is very much significant to find the distribution of vapor concentration of both fuels in a spray. This paper describes both distributions in a single diesel spray by use of the technique of laser induced fluorescence (LIF) in a constant volume chamber with high temperature at high pressure as the fundamental research.
Technical Paper

The Effect of Fuel-Vapor Concentration on the Process of Initial Combustion and Soot Formation in a DI Diesel Engine Using LII and LIEF

2001-03-05
2001-01-1255
A phenomenological or empirical model based on experimental results obtained from various optical measurements is critical for the understanding of DI diesel combustion phenomena as well as for the improvement of its emission characteristics. Such a model could be realized by the application of advanced optical measurement, which is able to isolate a particular phenomenon amongst complicated physical and chemical interactions, to a DI diesel combustion field. The authors have conducted experimental studies to clarify the combustion characteristics of unsteady turbulent diffusion flames in relation to the soot formation and oxidation process in a small-sized DI diesel engine. In the present study, the effect of fuel vapor concentration on the process of early combustion and soot formation has been investigated using several optical measurements.
Technical Paper

Multicomponent Fuel Consideration for Spray Evaporation Field and Spray-Wall Interaction

2001-03-05
2001-01-1071
It is expected that the analysis of the evaporation process for multicomponent fuels such as actual fuels like gasoline and diesel gas oil could be performed to assess more accurately the mixture preparation field inside the cylinder of D.I.S.I engines and diesel engines. In this paper, we suggested the importance of this multicomponent fuel consideration relating to the mixture formation and combustion characteristics from the basis of their own fuel physical and chemical properties. Then, we introduce a treatment for the phase change of a multicomponent solution through the formation of two-phase regions with the basis of chemical-thermodymical liquid-vapor equilibrium. Next, we analyze the distillation properties of a multicomponent fuel as well as the evaporation process of a multicomponent single droplet by use of the chemical-thermodymical analysis.
Technical Paper

Experimental Analysis on Soot Formation Process In DI Diesel Combustion Chamber by Use of Optical Diagnostics

2002-03-04
2002-01-0893
Soot formation process inside the combustion chamber of an DI diesel engine is focused as a phenomenological basic scheme by using several optical diagnostics technique for the improvement of diesel exhaust emission. We have conducted the series of optical measurement research for the clarification of combustion field in an DI diesel engine. Then, this paper is a kind of review by adding the fuel vapor properties and particle image velocimetry (PIV) analysis with focusing the soot formation process. The experiments were carried out in a small sized high-speed DI diesel engine installed with an optical access view. The spray characteristics and its flow field in 2-D field were measured by laser sheet scattering (LIS) method and PIV scheme.
Technical Paper

Vizualization of Evaporative Diesel Spray Impinging Upon Wall Surface by Exciplex Fluorescence Method

1992-02-01
920578
A single diesel spray of n-decane which was miscible with a small quantity of exciplex dopants was injected from a hole nozzle into a quiescent high-temperature and high-pressure atmosphere of nitrogen, and was impinged in a normaldirection upon a flat wall with elevated temperature. This experiment was to serve as a simplified model of the actual state in a combustion chamber of diesel engines. When a thin sheet of laser light from Nd:YAG laser is passing through the cross section of this spray containing its central axis, it is able to generate fluorescent emissions from vapor and liquid phases in this evaporating spray. Then, clear 2-dimensional images concerning the concentration distributions of vapor and liquid phases were obtained simultaneously, by an exciplex fluorescence method using an image-intensifier and a CCD camera system. The dispersion processes of vapor and liquid phases in this impinging spray near the wall were analyzed with an image analyzer.
Technical Paper

Combustion in a Small DI Diesel Engine at Starting

1992-02-01
920697
It is unavoidable that a DI diesel engine exhausts a blue and white smoke at starting, especially in the cold atmosphere. In the experiments presented here, a small DI diesel engine started under the conditions of coolant and suction air whose minimum temperatures were 255 K and 268 K, respectively. The flame was photographed by high-speed photography, the temperature of flame and the soot concentration were measured by two-color method, and CO2 concentration was detected by luminous method. The engine cannot be started over several cycles when the coolant temperature is 255 K and suction air temperature is 268 K. As the temperature of coolant and suction air are decreasing, the maxima of the cylinder pressure, the flame temperature, the soot concentration and CO2 concentration are decreasing. Luminous small dots or small lumps of flame become scattered in the piston cavity.
Technical Paper

Knocking Phenomena in a Rapid Compression and Expansion Machine

1992-02-01
920064
In this study, a rapid compression and expansion machine(RCEM) with a pancake combustion chamber was designed to investigate fundamentally on the knocking phenomena in spark ignition(S.I) engines. This RCEM is intended to simulate combustion in an actual engine. The homogeneous pre-mixture of n-pentane and air was charged into a quiescent atmosphere of the chamber. Then, the combustion field become simpler in this machine than it in a real S.I. engine. Also, the combustion phenomena, that is a cylinder pressure history, the behavior of flame propagation and so on, with high reproducibility are realized in this machine. The phenomena caught in this experiment were so-called low speed knocking. And, this knocking characteristics such as a knock intensity and a knock mass fraction were revealed by the cylinder pressure analysis varying the charge pressure and the equivalence ratio of the mixture, a compression ratio and an ignition timing.
Technical Paper

Atomization of Spray under Low-Pressure Field from Pintle Type Gasoline Injector

1992-02-01
920382
This paper presents an atomization mechanism of a spray injected into the low-pressure field, as the subject of injection system in a suction manifold of gasoline engine. Pure liquid fuel, which is n-Pentane or n-Hexane is injected into quiescent gaseous atmosphere at room-temperature and low- pressure through pintle type electronic control injector. Fuel sprays are observed by taking photographs for variation of the back pressure and the changes in spray characteristics with the back pressure below atmospheric pressure are examined in detail. In particular, in the case of the back pressure below the saturated vapor pressure of fuel, the atomization mechanism is discussed from a viewpoint of flash boiling phenomena, those are bubble growth rate and so on.
Technical Paper

Modeling of Diesel Spray Impingement on a Flat Wall

1994-10-01
941894
This paper presents an analysis using a model of the dispersion process of a Diesel spray impinging on a flat wall. The objective is to simulate the spray / wall interaction process inside Diesel engines. This analysis has two parts: one for non - evaporative spray and the other for evaporative spray. For the non - evaporative spray analysis, a single spray of n - tridecane was injected at high - pressure from a single hole nozzle into a quiescent atmosphere at room - temperature. The spray impinged vertically on the wall at room temperature. Thus, the wall temperature Tw was less than the saturation temperature Tsat of the fuel, that is the boiling temperature. A new submodel including fuel film formation on the wall, its breakup process due to droplet impingement and the dispersion process of breakup - droplets was developed. Also, the droplet density distribution was measured experimentally by the laser light extinction method.
Technical Paper

Modelling of Atomization Process in Flash Boiling Spray

1994-10-01
941925
This paper presents the analysis of atomization and vaporization processes in a flash boiling spray based on experimental results obtained from injection systems in the suction manifold of a gasoline engine. Two kinds of liquid fuel, n-Pentane and n-Hexane, were injected into quiescent atmosphere at room-temperature and low-pressure through a pintle type injector with electronic control. The spray characteristics of both fuels below various atmospheric pressures were investigated in detail by taking photography. Then, in the region of flash boiling, where the back pressure was below the saturated vapor pressure of fuel, the bubble nucleation process due to the flash boiling was modelled by both the measurement results of bubble and the nucleation rate equation using the degree of superheat of the liquid fuel.
Technical Paper

New Concept on Lower Exhaust Emission of Diesel Engine

1995-09-01
952062
One of countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure, and its demerit is increase in NOx, although soot is decreasing. Then, authors propose the new concept on the simultaneous reduction of NOx and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO2 gas dissolved. Flash boiling facilitates the distinguished atomization of fuel oil and CO2 gas contributes to realizes the internal EGR during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO2 gas dissolved is described in this paper, as a first step.
Technical Paper

Organized Structure and Motion in Diesel Spray

1997-02-24
970641
This paper deals with the particle distribution in Diesel spray under the non-evaporating condition from the analytical aspect based on our experimental results. In the analysis, TAB method of KIVA II code and the k-ε turbulent model were used, and the mono-disperse distribution of the initial parcel's diameter, whose size equals to the nozzle hole diameter, was utilized in conjunction with the breakup model. The size distribution of atomized droplets (i.e. the χ-squared distribution function) is justified with the degree of freedom. It is shown that the ambient gas, which is initially quiescent, is induced and led to a turbulent gas jet. The turbulent gas jet which has a equivalent momentum with the Diesel spray was also examined by Discrete Vortex method. The quantitative jet growth was shown to be possible for the estimation and determination in its initial boundary values at the nozzle.
Technical Paper

Quantitative Analysis of Fuel Vapor Concentration in Diesel Spray by Exciplex Fluorescence Method

1997-02-24
970796
An unsteady single spray of n-tridecane which was mixed with a small quantity of exciplex - forming dopants, that is naphthalene and TMPD, was impinged on a flat wall surface with high temperature of 550 K at a normal angle. These experiments were carried out in a quiescent N2 atmosphere with high temperature of 700 K and high pressure of 2.5 MPa. It was possible to generate the fluorescence emissions from the vapor and liquid phases in this spray, when a laser light sheet from a Nd:YAG laser was passing through the cross section of the spray containing its central axis. Then, clear 2 - D images of vapor and liquid phases in the spray were acquired simultaneously by this method. And, the vapor concentration was analyzed quantitatively by applying Lambert - Beer's law to the measured TMPD monomer fluorescence intensity from vapor phase, and by correcting the intensity for the effect of the quenching process due to the ambient temperature and fuel concentration.
Technical Paper

Characteristics of Free and Impinging Gas Jets by Means of Image Processing

1997-02-24
970045
A transient gas jet seems to be a model of a diesel spray because it has no vaporization process. Recently, CNG is utilized in a diesel engine. In the case of diesel engine, sprays or jets have the free state in some cases, and they are impinging surely on the piston surface in the other cases. The 2-D image of acetylene gas with tracer particles was taken by high-speed photography. In both jets, the outer shape was measured on the images and the characteristics of the internal flow was obtained by particle image velocimetry. Then, the physical models of these jets were constructed by use of experimental results.
Technical Paper

Effect of Nozzle Configurations for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970355
The spray structure under the pressurized atmosphere at a room temperature was examined by the various photographic methods. The fuel flow inside the nozzle was investigated by the transparent model nozzles. The experimental analysis of sprays yielded the spray dispersing angle, the distribution of fuel droplets inside the spray and the jet intact core length. The obtained results of those spray characteristics showed that the spray structure is divided into two spatial regimes due to their formation mechanisms. Within 10 mm from the nozzle, the spray dispersion is dominated by the turbulent states of fuel which are initiated inside the nozzle. At distance from the nozzle z > 20 - 40 mm, the spray consists of an induced gas vortex street whose length is about half of the spray width. It is proposed that the kinematic viscosity of ambient gas is a important factor which rules the process of momentum exchange form the fuel jet to the ambient gas.
Technical Paper

Effect of Ambient Gas Properties for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970352
In this paper, spray characteristics were examined to deduce the effect of ambient gas properties. Considered ambient properties were the viscosity μa and density ρa, and thus the kinematic viscosity νa. The objective of this paper is to reveal the effect of compressibility of the ambient gas to spray formation. In the experiments, the changed ranges were And a standard-sac volume nozzle of hole diameter dn =0.25 mm (ln/dn=3.0) was used at constant injection pressure difference (Δp=16.2 MPa). Also the injection pressure was varied in the range of 55 to 120 MPa with a mini-sac volume nozzle of hole diameter dn =0.20 mm (ln/dn =5.5). Several different gases were used to change the ambient viscosity at a room temperature. From the experiments, it is obtained that larger the viscosity, the more the spray spreads in the radial direction, thus the spray angle gets larger and the tip penetration became shorter.
X