Refine Your Search

Search Results

Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Similarity Law of Entrainment into Diesel Spray and Steady Spray

1990-02-01
900447
The surroundings around the diesel spray are entrained during the growth of the spray. The mixing process between the evaporated fuel oil and the entrained surroundings, that is, the entrainment, has a significant meaning for the combustion diesel engine. It is difficult to detect the movement of the entrainment because the diesel spray is the gas-liquid two-phase flow and the unsteady phenomenon within a few milliseconds. Then, in order to clarify and to generalize the movement of entrainment, following three experiments were done. 1)Two-dimensional steady water spray -flat spray- injected into the ambient atmosphere, using tuft and hot wire method. 2) Unsteady water jet injected into water, using tracer. 3)single diesel spray injected into the atmosphere with high pressure at room temperature, using smoke wire.
Technical Paper

Large Eddy Simulation of Diesel Spray Combustion with Eddy-Dissipation Model and CIP Method by Use of KIVALES

2007-04-16
2007-01-0247
Three-dimensional large eddy simulation (LES) has been conducted for a diesel spray flame using KIVALES which is LES version of KIVA code. Modified TAB model, velocity interpolation model and rigid sphere model are used to improve the prediction of the fuel-mixture process in the diesel spray. Combustion is simulated using the Eddy-Dissipation model. CIP method was incorporated into the KIVALES in order to suppress the numerical instability on the combustible flow. The formation of soot and NO was simulated using Hiroyasu model and KIVA original model. Three different grid resolutions were used to examine the grid dependency. The result shows that the LES approach with 0.5 mm grid size is able to resolve the instantaneous spray with the intermittency in the spray periphery, the axi-symmetric shape and meandering flow after the end of injection as shown in the experimental results.
Technical Paper

Study on Characteristics of Auto-Ignition and Combustion of Unsteady Synthetic Gas Jet

2007-04-16
2007-01-0629
It is thought that the synthetic gas, including hydrogen and carbon monoxide, has a potential to be an alternative fuel for internal combustion engines, because a heating value of the synthetic gas is higher than one of hydrogen or natural gas. A purpose of this study is to acquire stable auto-ignition and combustion of the synthetic gas which is supposed to be applied into a direct-injection compression ignition engine. In this study, the effects of ambient gas temperatures and oxygen concentrations on auto-ignition characteristics of the synthetic gas with changing percentage of hydrogen (H2) or carbon monoxide (CO) concentrations in the synthetic gas. An electronically-controlled, hydraulically-actuated gas injector was used to control a precise injection timing and period of gaseous fuels, and the experiments were conducted in an optically accessible, constant-volume combustion chamber under simulated quiescent diesel engine conditions.
Technical Paper

Visualization of Micro Structure in a Diesel Spray by Use of Photography with High Spatial Resolution

2008-10-06
2008-01-2465
It is very much necessary for researchers and engineers whose work is the field of combustion in a CI engine to find the information of droplets in a diesel spray. The information is strongly required to construct the model of spray built in the numerical code for its simulation and to be used for the verification of the accuracy of the calculation. This paper describes the photographing system with high spatial resolution, the distribution of droplet size and the vortex scale caused by the droplets motion by means of this system.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

Detailed Kinetic Modeling and Laser Diagnostics of Soot Formation Process in Diesel Jet Flame

2004-03-08
2004-01-1398
This work investigates the soot formation process in diesel jet flame using a detailed kinetic soot model implemented into the KIVA-3V multidimensional CFD code and 2D imaging by use of time-resolved laser induced incandescence (LII). The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver using Message Passing Interface (MPI). This allows for the chemical reactions to be simulated in parallel on multiple CPUs. The detailed soot model used is based on the method of moments, which begins with fuel pyrolysis, followed by the formation of polycyclic aromatic hydrocarbons, their growth and coagulation into spherical particles, and finally, surface growth and oxidation of the particles. The model can describe the spatial and temporal characteristics of soot formation processes such as soot precursors distributions, nucleation rate and surface reaction rate.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 2nd report: Analysis of combustion characteristics for the mixed fuels

2001-03-05
2001-01-0202
In the present study, we have proposed a novel fuel design concept in order to achieve low emissions and combustion control in engine systems. The fuel design concept is based on the combustion control that could be realized by using a mixed fuel with a lower boiling point fuel, such as gasoline or gaseous fuel components and a higher boiling point fuel, such as gas oil or fuel oil components. According to the fuel design concept proposed in this work, the characteristics of vaporization during mixture formation process as well as of combustion can be reasonably improved due to the formation of two-phase region. The heat release analysis was conducted to compare the temporal history of heat release for both a mixed fuel and a single component fuel that has the same transport properties of mixed fuels. In addition, the two-color method, which simultaneously allows the measurements of temperature distribution and soot concentration, is applied to the combustion field for mixed fuels.
Technical Paper

Exhaust Emission Through Diesel Combustion of Mixed Fuel Oil Composed of Fuel with High Volatility and that with Low Volatility

2004-06-08
2004-01-1845
The mixed fuel composed of two kinds of fuel oil whose boiling temperature is different each other forms the fine spray with minute droplets when its condition crosses over the two-phase region. It is expected that the fuel with low volatility dominates the ignition delay and that with high volatility does the generation of particulate matter. The experiments were carried out in a rapid compression and expansion machine and in an actual high-speed small sized diesel engine by use of this kind of fuel. The experimental results prove this expectation.
Technical Paper

Mechanism of Combined Combustion of Premixed Gas and Droplets

2002-10-21
2002-01-2843
In an SI engine with direct injection of gasoline (DGI), many small droplets disperse in premixed gas in the cylinder. In a CI engine, diesel spray is injected a cylinder, thus, the situation at the spray periphery is almost the same as that of DGI SI engine. From the standpoint it is useful for understanding the combustion phenomena in both engines to experiment the combined combustion of premixed gas where many small droplets exist. This paper describes this kind of combustion and it seems to be able to apply the results to the simulation of combustion in these engines.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 4th Report: Effect of Spray Characteristics of Mixed Fuel on Exhaust Concentrations in Diesel Engine

2003-03-03
2003-01-1038
In this study, the novel fuel design concept has been proposed in order to realize the low emission and combustion control in engine systems. In this fuel design concept, the mixed fuels with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components) are used in order to improve the spray characteristics by flash boiling. In our previous papers on this study, the fundamental characteristics of spray and its combustion of mixed fuel were reported. In this paper, heat release and exhaust emission (smoke, NOx and THC) characteristics of single cylinder diesel engine operated with the mixed fuels were investigated under each load. The exhaust performance of diesel engine could be improved using mixed fuel, because fuel properties and spray characteristics were controlled by changing mixing fraction of the mixed fuel.
Technical Paper

Effects of Ambient Gas Conditions on Ignition and Combustion Process of Oxygenated Fuel Sprays

2003-05-19
2003-01-1790
This work presents the ignition delay time characteristics of oxygenated fuel sprays under simulated diesel engine conditions. A constant volume combustion vessel is used for the experiments. The fuels used in the experiments were three oxygenated fuels: diethylene glycol dibutyl ether, diethylene glycol diethyl ether, and diethylene glycol dimethyl ether. JIS 2nd class gas oil was used as the reference fuel. The ambient gas temperature and oxygen concentration were ranging from 700 to 1100K and from 21 to 9%, respectively. The results show that the ignition delay of each oxygenated fuel tested in this experiments exhibits shorter than that of gas oil fuel for the wide range of ambient gas conditions. Also, NTC (negative temperature coefficient) behavior which appears under shock tube experiment for homogenous fuel-air mixture was observed on low ambient gas oxygen concentration for each fuel. And at the condition, the ignition behavior exhibits two-stage phase.
Technical Paper

Soot Kinetic Modeling and Empirical Validation on Smokeless Diesel Combustion with Oxygenated Fuels

2003-05-19
2003-01-1789
This paper provides new insights on the mechanism of the smokeless diesel combustion with oxygenated fuels, based on a combination of soot kinetic modeling and optical diagnostics. The chemical effects of fuel compositions, including aromatics - paraffins blend, neat oxygenated fuels and oxygenate additives, on sooting equivalence ratio ‘ϕ’ - temperature ‘T’ dependence were numerically examined using a detailed soot kinetic model. To better understand the physical factors affecting soot formation in oxygenated fuel sprays, the effects of injection pressure and ambient gas temperature on the flame lift-off length and relative soot concentration in oxygenated fuel jets were experimentally investigated. The computational results show that the leaner mixture side of soot formation peninsula on the ϕ - T map, rather than the lower temperature one, should be utilized to suppress the formation of PAHs and ultra-fine particles together with the large reduction in particulate mass.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

2003-05-19
2003-01-1838
Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
Technical Paper

Effects of Flame Lift-Off and Flame Temperature on Soot Formation in Oxygenated Fuel Sprays

2003-03-03
2003-01-0073
Considering the bell-shaped temperature dependence of soot particle formation, the control of flame temperature has a possibility to drastically suppress of soot formation. Furthermore, oxygenated fuels are very effective on soot reduction, and the use of these kinds of fuels has a potentiality for smokeless diesel combustion. In this paper, the effects of flame lift-off and flame temperature on soot formation in oxygenated fuel sprays were experimentally investigated using a constant volume combustion vessel which simulated diesel engine conditions. The diffusion flame lift-off length was measured in order to estimate the amount of the oxygen entrained upstream of the flame lift-off length in the fuel jet. This was determined from time-averaged OH chemiluminescence imaging technique. Also, the flame temperature and soot concentration were simultaneously evaluated by means of two-color method.
Technical Paper

New Concept on Lower Exhaust Emission of Diesel Engine

1995-09-01
952062
One of countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure, and its demerit is increase in NOx, although soot is decreasing. Then, authors propose the new concept on the simultaneous reduction of NOx and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO2 gas dissolved. Flash boiling facilitates the distinguished atomization of fuel oil and CO2 gas contributes to realizes the internal EGR during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO2 gas dissolved is described in this paper, as a first step.
Technical Paper

Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray

1997-02-24
970871
For current passenger vehicles, multi-point injection (MPI) systems are extensively employed for gasoline engines due to ease of control and rapid response. In these systems, the pressure within the intake manifold to which the injectors are installed can fall below the saturated vapor pressure of some hydrocarbon components present in the fuel. Such a condition leads to an atomization process in which flash boiling occurs. In the present work, the atomization process under flash boiling conditions has been characterized both experimentally and theoretically. The experimental investigation has been carried out with a spray test facility consisting of a variable pressure chamber equipped with a pintle type fuel nozzle. Infrared Extinction/Scattering (IRES) is utilized to provide temporal and spatially resolved distribution of the fuel vapor concentration within the spray.
Technical Paper

Characteristics of Intermediate Products Generated During Diesel Combustion by Means of Total Gas Sampling

2004-10-25
2004-01-2923
It is very significant to take the intermediate products in diesel combustion for understanding the generation of exhaust emissions like SOF, dry soot and so on. The products generated in a constant volume combustion chamber were sampled by pricking a sheet of polyester film installed in the chamber to freeze the chemical reaction. The gas was analyzed by a gas chromatography. The fuel used was n-heptane. It is able to explain the generation of exhaust emissions by the experimental results. The other objective is to simulate the intermediate products. It is capable of explaining the relation between the simulated and experimental results.
Technical Paper

Combustion Phenomena in IDI Diesel Engine Detected by Optical Methods

1999-10-25
1999-01-3652
The combustion phenomena in an IDI diesel engine having a swirl chamber were detected by optical methods. The spatial and temporal distribution of the natural emission of OH radical was measured through the band pass filters and those of KL factor and flame temperature were obtained by the two-color method. As a consequence, the combustion phenomena are made clear by these experimental results.
X