Refine Your Search



Search Results

Technical Paper

A Study of PM Emission Characteristics of Diesel Vehicle Fueled with GTL

In this study, diesel exhaust emission characteristics were investigated as GTL (Gas To Liquid) fuel was applied to a heavy-duty diesel truck which had been developed to match a Japanese new long-term exhaust emission regulation (NOx < 2.0 g/kWh, PM < 0.027 g/kWh). The results in this study show that although the test vehicle has advanced technologies (e.g. high pressure fuel injection, oxidation catalyst, and urea-SCR aftertreatment system, etc.) which are applied to reduce diesel emissions, the neat GTL fuel has a great advantage to reduce particulate matter emissions and poly aromatic hydrocarbons. And regarding nano-size PM emissions, nuclei mode particles emitted during idling are significantly decreased by using the GTL fuel.
Technical Paper

Studies of Fuel Properties and Oxidation Stability of Biodiesel Fuel

Biodiesel fuel has attracted much attention as a carbon neutral fuel because it is made from vegetable oil. Especially in Southeast Asia, there are numerous biofuel resources, such as palm oil and coconut oil, and it is desirable to utilize these for CO2 reduction. In this paper, we evaluate the properties of biodiesel fuel and biodiesel blended diesel oil. The low temperature performance of palm oil methyl ester (PME) is poor and it affects low temperature performance, even if the PME blending rate is low. The oxidation stability is a very important property of biodiesel fuel because degraded biodiesel fuel produces organic acids and polymeric substances. PME contains mainly saturated fatty acids methyl esters, so the oxidation stability is better than other fats and oils. When containing antioxidants such as beta carotene, biodiesel's oxidation stability is improved.
Technical Paper

Study on Characteristics of Auto-Ignition and Combustion of Unsteady Synthetic Gas Jet

It is thought that the synthetic gas, including hydrogen and carbon monoxide, has a potential to be an alternative fuel for internal combustion engines, because a heating value of the synthetic gas is higher than one of hydrogen or natural gas. A purpose of this study is to acquire stable auto-ignition and combustion of the synthetic gas which is supposed to be applied into a direct-injection compression ignition engine. In this study, the effects of ambient gas temperatures and oxygen concentrations on auto-ignition characteristics of the synthetic gas with changing percentage of hydrogen (H2) or carbon monoxide (CO) concentrations in the synthetic gas. An electronically-controlled, hydraulically-actuated gas injector was used to control a precise injection timing and period of gaseous fuels, and the experiments were conducted in an optically accessible, constant-volume combustion chamber under simulated quiescent diesel engine conditions.
Technical Paper

Effect of Operational Condition on PM in Exhausted Gas through CI Engine

The particulate matters (PM) containing in the exhaust gas through a CI engine affects strongly the human health. Thus, it is very significant to measure the mechanism of PM itself generation for actualization of a clean CI engine. On the standpoint mentioned above, the authors carried out the experiments of the characteristics of PM generated from a small high speed DI CI engine with a single cylinder. The variables were the equivalence ratio, the injection timing, the EGR rate and the sort of fuel. As a result, the effect of experimental condition on the distribution of PM is clear through experiments.
Technical Paper

Performance and Emissions Characteristics of an LPG Direct Injection Diesel Engines

In this study, performance and emissions characteristics of an LPG direct injection (DI) engine with a rotary distributor pump were examined by using cetane enhanced LPG fuel developed for diesel engines. Results showed that stable engine operation was possible for a wide range of engine loads. Also, engine output power with cetane enhanced LPG was comparable to diesel fuel operation. Exhaust emissions measurements showed NOx and smoke could be reduced with the cetane enhanced LPG fuel. Experimental model vehicle with an in-line plunger pump has received its license plate in June 2000 and started high-speed tests on a test course. It has already been operated more than 15,000 km without any major failure. Another, experimental model vehicle with a rotary distributor pump was developed and received its license plate to operate on public roads.
Technical Paper

Spray and Exhaust Emission Characteristics of a Biodiesel Engine Operating with the Blend of Plant Oil and DME

As an effective method to solve the global warming and the energy crisis, the research has been carried out for the adaptability of plant oil as an alternative fuel for Diesel engine. But there are the problems of engine performance and exhaust emissions owing to the high viscosity and low volatility, when the plant oil is used as a fuel. In order to eliminate these problems, spray characteristics of the DME (Dimethyl ether) blended plant oil has been examined by using the image processing based on the shadowgraph methodology. Results show that the optimum mixing ratio of the blend is about 50:50 (by weight %). Thereafter, experiments have been conducted with a DI Diesel engine using the DME blended plant oil, and compared the exhaust emissions with Diesel, DME and transesterified fuel operation. From the results, it can be concluded that the combustion characteristics of DME blended plant oil are comparable to Diesel fuel.
Technical Paper

Analysis of Diesel Spray Structure by Using a Hybrid Model of TAB Breakup Model and Vortex Method

This study proposes a hybrid model which consists of modified TAB(Taylor Analogy Breakup) model and DVM(Discrete Vortex Method). In this study, the simulation process is divided into three steps. The first step is to analyze the breakup of droplet of injected fuel by using modified TAB model. The second step based on the theory of Siebers' liquid length is analysis of spray evaporation. The liquid length analysis of injected fuel is used for connecting both modified TAB model and DVM. The final step is to reproduce the ambient gas flow and inner vortex flow injected fuel by using DVM. In order to examine the hybrid model, an experiment of a free evaporating fuel spray at early injection stage of in-cylinder like conditions had been executed. The numerical results calculated by using the present hybrid model are compared with the experimental ones.
Technical Paper

Japanese Standards for Diesel Fuel Containing 5% FAME: Investigation of Acid Generation in FAME Blended Diesel Fuels and Its Impact on Corrosion

The Agency of Natural Resources and Energy, Ministry of Economy, Trade and Industry has conducted conformity tests of diesel fuel containing Fatty Acid Methyl Ester (FAME) to amend diesel fuel standards in Japan. The objective of the tests is to examine appropriate specifications of diesel fuel containing FAME for automotive use for existing vehicles in the Japanese market. The conformity testing includes verification of fuel system component compatibility, tail pipe emissions, and characterization of the reliability and durability of the engine system, including the fuel injection system. In designing the conformity tests, the maximum FAME concentration was 5%. Most of the new standards are essentially equivalent to EN14214, but the total acid number (TAN) of specific acids, and oxidation stability of the new standards for diesel fuel containing FAME, are different from EN14214.
Technical Paper

Soot Generation in Spray of Oxygenated Fuel

One of the effective ways to cope with the very severe future regulation of soot exhausted through a CI engine is the use of oxygenated fuel. This paper describes the experimental results of the soot generation of six kinds of oxygenated fuel and n-heptane whose cetane number is the almost the same as that of the gas oil by means of time resolved LII (TIRE-LII) and the classical two color method. The experiments were carried out in a constant volume chamber. The main result is that the oxygen content of the fuel is the much significant factor to decrease in the soot.
Technical Paper

Rolling Tire Vibration Caused by Road Roughness

To reduce tire/road noise, it is important to examine the noise generation mechanism. Noise generated by a rolling tire is mainly emitted from the tread block. However, it has recently been reported that smooth tires also generate noise recently. This paper remarks on a smooth tire vibration by rolling on the road. The vibration of a rolling smooth tire is mainly vibration excited from the road surface. It is difficult to measure the input from the road surface, so we measured the tire's vibration at the leading and trailing edges. Scan Laser Doppler Vibrometers were employed to measure the vibration of the tire tread.
Technical Paper

Characteristics of a Transient Spray of Fuel with Multiple Components

Almost all the researches relating to the characteristics of transient spray have carried out by using the fuel with only single component. However, the actual fuel oil supplying to a reciprocating engine has multiple components. Thus, this paper describes the experimental results on the characteristics of a transient spray formed by the mixed fuel with three kinds of pure fuel. The state of periphery of non evaporating spray near the nozzle outlet was arranged by the dimensionless number. And the technique of laser Induced fluorescence (LIF) was applied to an evaporating spray to find the state of mixing.
Technical Paper

Exhaust Emission Through Diesel Combustion of Mixed Fuel Oil Composed of Fuel with High Volatility and that with Low Volatility

The mixed fuel composed of two kinds of fuel oil whose boiling temperature is different each other forms the fine spray with minute droplets when its condition crosses over the two-phase region. It is expected that the fuel with low volatility dominates the ignition delay and that with high volatility does the generation of particulate matter. The experiments were carried out in a rapid compression and expansion machine and in an actual high-speed small sized diesel engine by use of this kind of fuel. The experimental results prove this expectation.
Technical Paper

A Study of Fuel Auto-ignitability on Premixed Compression Ignition Characteristics

It has been clarified that diesel fuel properties have a great effect on the exhaust emissions and fuel consumption of a conventional diesel combustion regime. And as other diesel combustion regimes are applied in order to improve exhaust emissions and fuel consumption, it can be supposed that the fuel properties also have significant effects. The purpose of this study is to propose the optimum diesel fuel properties for a premixed compression ignition (PCI) combustion regime. In this paper, the effect of the auto-ignitability of diesel fuels on exhaust emissions and fuel consumption was evaluated using a heavy-duty single-cylinder test engine. In all experiments, fuels were injected using an electronically controlled, common-rail diesel fuel injector, and most experiments were conducted under high EGR conditions in order to reduce NOx emissions.
Technical Paper

Effect of Convective Schemes on LES of Fuel Spray by Use of KIVALES

In this study, a numerical experiment using a 2D convective equation and LES of an evaporative diesel spray for different convective schemes has been performed to examine effects of convective schemes on a fuel-air mixture formation of the diesel spray simulation and to determine the convective scheme used in KIVALES. In addition to KIVALES original schemes, such as QSOU, PDC and IDC, CIP was incorporated into KIVALES in order to calculate the convective terms with low numerical diffusion. The numerical experiment using the 2D convective equation showed that the numerical diffusion of CIP scheme was lowest in the convective schemes used in present study. However CIP scheme used was not a monotone scheme completely due to the overshoot and the undershoot of the scalar provided near the boundary. Hence, CIP scheme was employed for only the convective term of the LES momentum equation, while the other convective schemes were calculated using QSOU, which is a monotone scheme.
Technical Paper

Prediction of Spindle Force Using Measured Road Forces on Rolling Tire

Improvement of vehicle interior noise is desired in recent years in the modern world of the demand of low weight, good fuel economy and offering technical advantages strongly. The dynamic force transmission of rolling tires from the road surface to the spindles is a critical factor in vehicle interior noise. We focus on structure-borne noise transferred through the spindle. It is necessary for effort of the effective tire/road noise reduction to predict spindle force excited by tire/road contact. The major issues in predicting spindle forces are to clarify the distribution of road forces and how to input on the simulation model. Therefore, it is important that road forces are measured accurately on the rolling tire. First, the dynamic road forces on the rolling tire are measured by using the tri-axial force sensor directly. In efforts to reduce interior noise due to structure-borne noise, it is necessary to predict spindle forces excited by the tire/road contact.
Technical Paper

Visualization of Micro Structure in a Diesel Spray by Use of Photography with High Spatial Resolution

It is very much necessary for researchers and engineers whose work is the field of combustion in a CI engine to find the information of droplets in a diesel spray. The information is strongly required to construct the model of spray built in the numerical code for its simulation and to be used for the verification of the accuracy of the calculation. This paper describes the photographing system with high spatial resolution, the distribution of droplet size and the vortex scale caused by the droplets motion by means of this system.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
Technical Paper

Multi-Objective Optimization of Diesel Engine Emissions and Fuel Economy using Genetic Algorithms and Phenomenological Model

In this paper, the simulation of the multi-objective optimization problem of a diesel engine is performed using the phenomenological model of a diesel engine and the genetic algorithm. The target purpose functions are Specific fuel consumption, NOx, and Soot. The design variable is a shape of injection rate. In this research, we emphasize the following three topics by applying the optimization techniques to an emission problem of a diesel engine. Firstly, the multiple injections control the objectives. Secondly, the multi-objective optimization is very useful in an emission problem. Finally, the phenomenological model has a great advantage for optimization. The developed system is illustrated with the simulation examples.
Technical Paper

Performance and Emissions of a DI Diesel Engine Operated with LPG and Ignition Improving Additives

This research investigated the performance and emissions of a direct injection (DI) Diesel engine operated on 100% butane liquid petroleum gas (LPG). The LPG has a low cetane number, therefore di-tertiary-butyl peroxide (DTBP) and aliphatic hydrocarbon (AHC) were added to the LPG (100% butane) to enhance cetane number. With the cetane improver, stable Diesel engine operation over a wide range of the engine loads was possible. By changing the concentration of DTBP and AHC several different LPG blended fuels were obtained. In-cylinder visualization was also used in this research to check the combustion behavior. LPG and only AHC blended fuel showed NOX emission increased compared to Diesel fuel operation. Experimental result showed that the thermal efficiency of LPG powered Diesel engine was comparable to Diesel fuel operation. Exhaust emissions measurements showed that NOX and smoke could be considerably reduced with the blend of LPG, DTBP and AHC.