Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Advanced ISS Air Monitoring — The ANITA and ANITA2 Missions

After 11 months of successful operation onboard the ISS US laboratory Destiny, the air quality monitors ANITA (Analyzing Interferometer for Ambient Air) was brought back to Earth on STS126 (ULF2). ANITA is a technology demonstrator flight experiment for continuous air quality monitoring inside the crewed cabin of the ISS with low detection limits and high time resolution. For the first time, the dynamics of the detected trace gas concentrations could be directly resolved by ANITA and correlated to gas events in the cabin. The system is the result of a long term ESA technology development programme initiated more than seventeen years ago. The ANITA mission was a cooperative project between ESA and NASA. ESA's responsibilities were the provision of the H/W, the data acquisition and the data evaluation. NASA was responsible for the launch, accommodation and operation onboard ISS, data download and the transportation of ANITA back to the Earth.
Journal Article

Evaluation of ANITA Air Monitoring on the International Space Station

ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics, with high time resolution, in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarises the results of ANITA's air analyses and compares results to other measurements acquired on ISS during the operational period.
Technical Paper

EURECA Postflight Investigation

With the successful retrieval of EURECA, the EUROPEAN RETRIEVABLE CARRIER, again a long term orbit satellite (11 month in space) is available for the space material community to investigate the influence of low earth orbit environment on materials which stayed in orbit for a prolonged time. EURECA, designed, manufactured and launched to carry out numerous experiments in the fields of fluid- and solar physics, materials science, biology and astronomy under orbital conditions, in parallel presents a huge material expositon experiment in itself, providing detailed insight into the possible orbital degradation mechanisms due to the synergistic effects of atomic oxygen, UV radiation, thermal cycling, high vacuum and micrometeorite/debris impacts. In order to exploit the valuable information, an integrated ESTEC/ERNO team has been established to perform a detailed investigation of the EURECA surface and - as far as accessible -internal structural parts and experiments.
Technical Paper

Air Revitalisation System Demonstrator Design and Test Results

Since 1985 in a step by step approach an advanced air revitalisation system has been developed for a crewed spacecraft. The metabolically produced carbon dioxide is concentrated through a solid amine water steam desorp-tion system and reduced to water and methane in a so-called Sabatier reactor. The water is currently fed into a fixed alkaline electrolyser to reclaim the oxygen for the crew. However, also water from other sources may be used. The hydrogen is recycled into the Sabatier reactor. The present system handles methane as a waste product closing so far the oxygen loop only. The system has been already successfully demonstrated in a laboratory scale configuration for a crew of three persons in 1996/1997. This paper discusses the results of the current development phase in which the system is reconfigured to fit into an International Space Station payload rack (ISPR). For this purpose the complete system design has been reviewed and upgraded where necessary.