Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Sensitivity of Flamelet Combustion Model to Flame Curvature for IC Engine Application

2017-09-04
2017-24-0038
Engines with reduced emissions and improved efficiency are of high interest for road transport. However, achieving these two goals is challenging and various concepts such as PFI/DI/HCCI/PCCI are explored by engine manufacturers. The computational fluid dynamics is becoming an integral part of modern engine development programme because this method provides access to in-cylinder flow and thermo-chemical processes to develop a closer understanding to tailor tumble and swirling motions to construct green engines. The combustion modelling, its accuracy and robustness play a vital role in this. Out of many modelling methods proposed in the past flamelet based methods are quite attractive for SI engine application. In this study, FlaRe (Flamelets revised for physical consistencies) approach is used to simulate premixed combustion inside a gasoline PFI single-cylinder, four-stroke SI engine. This approach includes a parameter representing the effects of flame curvature on the burning rate.
Technical Paper

Numerical Investigation of Nozzle-Geometry Variations and Back-Pressure Changes on High Pressure Gas Injections under Application-Relevant Conditions

2018-04-03
2018-01-1138
In the present work numerical simulations were carried out investigating the effect of fuel type, nozzle-geometry variations and back-pressure changes on high-pressure gas injections under application-relevant conditions. Methane, hydrogen and nitrogen with a total pressure of 500 bar served as high-pressure fuels and were injected into air at rest at 200 bar and 100 bar. Different nozzle shapes were simulated and the analysis of the results lead to a recommendation for the most advantageous geometry regarding jet penetration, volumetric growth, mixing enhancement and discharge coefficient. Additionally an artificial inlet boundary conditions was tested for the use with real-gas thermodynamics and was shown to be capable of reducing the simulation time significantly.
Technical Paper

Spark Ignition Engine Simulation Using a Flamelet Based Combustion Model

2015-09-06
2015-24-2402
Three-dimensional Computational Fluid Dynamics (CFD) has become an integral part in analysing engine in-cylinder processes since it provides detailed information on the flow and combustion, which helps to find design improvements during the development of modern engine concepts. The predictive capability of simulation tools depends largely on the accuracy, fidelity and robustness of the various models used, in particular concerning turbulence and combustion. In this study, a flamelet model with a physics based closure for the progress variable dissipation rate is applied for the first time to a spark ignited IC engine. The predictive capabilities of the proposed approach are studied for one operating condition of a gasoline port fuel injected single-cylinder, four-stroke spark ignited full-metal engine running at 3,500 RPM close to full load (10 bar BMEP) at stoichiometric conditions.
Technical Paper

Flamelet Generated Manifolds Applied to Dual-Fuel Combustion of Lean Methane/Air Mixtures at Engine Relevant Conditions Ignited by n Dodecane Micro Pilot Sprays

2019-04-02
2019-01-1163
In this study, a novel 3D-CFD combustion model employing Flamelet Generated Manifolds (FGM) for dual fuel combustion was developed. Validation of the platform was carried out using recent experimental results from an optically accessible Rapid Compression Expansion Machine (RCEM). Methane and n-dodecane were used as model fuels to remove any uncertainties in terms of fuel composition. The model used a tabulated chemistry approach employing a reaction mechanism of 130 species and 2399 reactions and was able to capture non-premixed auto ignition of the pilot fuel as well as premixed flame propagation of the background mixture. The CFD model was found to predict well all phases of the dual fuel combustion process: I) the pilot fuel ignition delay, II) the Heat Release Rate of the partially premixed conversion of the micro pilot spray with entrained methane/air and III) the sustained background mixture combustion following the consumption of the spray plume.
Technical Paper

A Zero Dimensional Turbulence and Heat Transfer Phenomenological Model for Pre-Chamber Gas Engines

2018-04-03
2018-01-1453
Most of the phenomena that occur during the high pressure cycle of a spark ignition engine are highly influenced by the gas temperature, turbulence intensity and turbulence length scale inside the cylinder. For a pre chamber gas engine, the small volume and the high surface-to-volume ratio of the pre chamber increases the relative significance of the gas-to-wall heat losses, the early flame kernel development and the wall induced quenching; all of these phenomena are associated up to a certain extent with the turbulence and temperature field inside the pre chamber. While three-dimensional (3D) computational fluid dynamics (CFD) simulations can capture complex phenomena inside the pre chamber with high accuracy, they have high computational cost. Quasi dimensional models, on the contrary, provide a computationally inexpensive alternative for simulating multiple operating conditions as well as different geometries.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Technical Paper

THE Post Injection: Coalescence of 3D CFD-CMC Simulation, 2D Visualizations in a Constant Volume Chamber and Application in a Modern Passenger Car Diesel Engine

2015-09-06
2015-24-2515
Past research has shown that post injections have the potential to reduce Diesel engine exhaust PM concentration without any significant influence in NOx emissions. However, an accurate, widely applicable rule of how to parameterize a post injection such that it provides a maximum reduction of PM emissions does not exist. Moreover, the underlying mechanisms are not thoroughly understood. In past research, the underlying mechanisms have been investigated in engine experiments, in constant volume chambers and also using detailed 3D CFD-CMC simulations. It has been observed that soot reduction due to a post injection is mainly due to two reasons: increased turbulence from the post injection during soot oxidation and lower soot formation due to lower amount of fuel in the main combustion at similar load conditions. Those studies do not show a significant temperature rise caused by the post injection.
Technical Paper

Large Eddy Simulations and Tracer-LIF Diagnostics of Wall Film Dynamics in an Optically Accessible GDI Research Engine

2019-09-09
2019-24-0131
Large Eddy Simulations (LES) and tracer-based Laser-Induced Fluorescence (LIF) measurements were performed to study the dynamics of fuel wall-films on the piston top of an optically accessible, four-valve pent-roof GDI research engine for a total of eight operating conditions. Starting from a reference point, the systematic variations include changes in engine speed (600; 1,200 and 2,000 RPM) and load (1000 and 500 mbar intake pressure); concerning the fuel path the Start Of Injection (SOI=360°, 390° and 420° CA after gas exchange TDC) as well as the injection pressure (10, 20 and 35 MPa) were varied. For each condition, 40 experimental images were acquired phase-locked at 10° CA intervals after SOI, showing the wall-film dynamics in terms of spatial extent, thickness and temperature.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Modeling Split Injections of ECN “Spray A” Using a Conditional Moment Closure Combustion Model with RANS and LES

2016-10-17
2016-01-2237
This study investigates n-dodecane split injections of “Spray A” from the Engine Combustion Network (ECN) using two different turbulence treatments (RANS and LES) in conjunction with a Conditional Moment Closure combustion model (CMC). The two modeling approaches are first assessed in terms of vapor spray penetration evolutions of non-reacting split injections showing a clearly superior performance of the LES compared to RANS: while the former successfully reproduces the experimental results for both first and second injection events, the slipstream effect in the wake of the first injection jet is not accurately captured by RANS leading to an over-predicted spray tip penetration of the second pulse. In a second step, two reactive operating conditions with the same ambient density were investigated, namely one at a diesel-like condition (900K, 60bar) and one at a lower temperature (750K, 50bar).
X