Refine Your Search

Topic

Author

Search Results

Video

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-12-05
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. Presenter Chinmaya Patil, Eaton Corporation
Technical Paper

Development and Validation of Diamond-Like Carbon Coating for a Switching Roller Finger Follower

2012-09-24
2012-01-1964
An advanced variable valve actuation system is developed that requires a coating with high stress loading capability on the sliding interfaces to enable compact packaging solutions for gasoline passenger car applications. The valvetrain system consists of a switching roller bearing finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve. The SRFF contains two slider pads and a single roller to provide discrete variable valve lift capability on the intake valves. These components are installed on a four cylinder gasoline engine. The motivation for designing this type of variable valve actuation system is targeted to improve fuel economy by reducing the air pumping losses during partial load engine operation. This paper addresses the technology developed to utilize a Diamond-like carbon (DLC) coating on the slider pads of the SRFF.
Technical Paper

Switching Roller Finger Follower Meets Lifetime Passenger Car Durability Requirements

2012-09-10
2012-01-1640
An advanced variable valve actuation (VVA) system is characterized following end-of-life testing to enable fuel economy solutions for passenger car applications. The system consists of a switching roller finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve that are integrated into a four cylinder gasoline engine. The SRFF provides discrete valve lift capability on the intake valves. The motivation for designing this type of VVA system is targeted to improve fuel economy by reducing the air pumping losses during part load engine operation. This paper addresses the durability of a SRFF for meeting passenger car durability requirements. Extensive durability tests were conducted for high speed, low speed, switching, and cold start operation. High engine speed test results show stable valvetrain dynamics above 7000 engine rpm. System wear requirements met end-of-life criteria for the switching, sliding, rolling and torsion spring interfaces.
Technical Paper

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-09-13
2011-01-2274
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
Technical Paper

Quantification of Diesel Engine Vibration Using Cylinder Deactivation for Exhaust Temperature Management and Recipe for Implementation in Commercial Vehicles

2018-04-03
2018-01-1284
Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems, used to remove engine NOx, are temperature dependent. Variable valve actuation in the form of cylinder deactivation (CDA) has been shown to manage exhaust temperatures to the aftertreatment system during low load operation (i.e., under 3-4 bar BMEP). During cylinder deactivation mode, a diesel engine can have higher vibration levels when compared to normal six cylinder operation. The viability of CDA needs to be implemented in a way to manage noise, vibration and harshness (NVH) within acceptable ranges for today’s commercial vehicles and drivelines. A heavy duty diesel engine (inline 6 cylinder) was instrumented to collect vibration data in a dynamometer test cell.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

2018-04-03
2018-01-0379
Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Technical Paper

Frictional Differences between Rolling and Sliding Interfaces for Passenger Car Switching Roller Finger Followers

2018-04-03
2018-01-0382
The demand for improving fuel economy in passenger cars is continuously increasing. Eliminating energy losses within the engine is one method of achieving fuel economy improvement. Frictional energy losses account for a noticeable portion of the overall efficiency of an engine. Valvetrain friction, specifically at the camshaft interface, is one area where potential for friction reduction is evident. Several factors can impact the friction at the camshaft interface. Some examples include: camshaft lobe profile, rocker arm interface geometry, valve spring properties, material properties, oil temperature, and oil pressure. This paper discusses the results of a series of tests that experimented the changes in friction that take place as these factors are altered. The impact of varying testing conditions such as oil pressure and oil temperature was evaluated throughout the duration of the testing and described herein.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

A New Composite Drive Cycle for Heavy-Duty Hybrid Electric Class 4-6 Vehicles

2004-03-08
2004-01-1052
This paper presents a new composite drive cycle used to evaluate and test the performance of Class 4-6 heavy-duty hybrid electric vehicles (HEVs). The new cycle is being used in the ongoing Advanced Heavy Hybrid Propulsion Systems (AHHPS) Program, sponsored by the U.S. Department of Energy. The goal was to select a cycle that is acceptable to all involved parties, has an achievable speed-time trace for target applications, represents the typical driving pattern of these applications, and is practical for testing and state-of-charge correction. These criteria were applied to numerous element and composite cycles. Ultimately, a new composite cycle was developed and selected-the Combined International Local and Commuter Cycle (CILCC). Various activities conducted under the AHHPS Program are based on this cycle, including energy auditing, modeling and simulation, system optimization, and vehicle testing.
Technical Paper

Timing Gear Whine Noise Reduction Methodology and Application in Superchargers

2005-05-16
2005-01-2450
Extensive experimental and numerical investigations were done to improve the vibration and acoustic performance due to excitation at the timing gears of automotive supercharger. Gear excitation, system response, and covers have been studied to find the most cost efficient method for reducing gear whine noise. Initially, gear excitation was studied where it was found that transmission error due to profile quality was the dominant source parameter for gear whine noise. To investigate the system effects on gear noise, a parametric study was carried using FEM model of the supercharger, with special interests in optimizing dynamic characteristics of internal components and the coupling to supercharger housing. The BEM model of the corresponding supercharger was built to predict the noise improvement after dynamic optimization of the system. Good correlations were observed between experimental and numerical results in both dynamic and acoustic parameters.
Technical Paper

Minimizing Dynamic Rollover Propensity with Electronic Limited Slip Differentials

2006-04-03
2006-01-1279
Vehicle rollover has the highest fatality rate among non-collision vehicle crashes. This paper introduces a control scheme with electronically controlled limited slip differential (ELSD) to prevent vehicle rollover. Although the analysis focuses on only an un-tripped and on-road scenario which is a small portion of vehicle rollover accidents, it intends to minimize the dynamic rollover propensity by meeting the National Highway Traffic Safety Administration's (NHTSA) fishhook test. A nonlinear model of planar vehicle dynamics with roll motion is analyzed, and the general characteristics of ELSD are presented. Based on that, a rollover mitigation algorithm is proposed. Finally, a computer simulation demonstrates the effectiveness of the rollover mitigation algorithm.
Technical Paper

Modeling and Sensorless Estimation for Single Spring Solenoids

2006-04-03
2006-01-1678
This paper presents an empirical dynamic model of a single spring electromagnetic solenoid actuator system, including bounce, temperature effects and coil leakage inductance. The model neglects hysteresis and saturation, the aim being to compensate for these uncertainties through estimator robustness. The model is validated for all regions of operation and there is a good agreement between model and experimental data. A nonlinear (sliding mode) estimator is developed to estimate position and speed from current measurements. Since the estimator makes use of only current measurement it is given the name sensorless. The estimator is validated in simulation and experimentally. The novelty in this paper lies in the fact that accurate state estimation can be realized on a simple linear model using a robust observer theory. Also, the formulations for leakage inductance and coil temperature are unique.
Technical Paper

Hydraulic Hybrid Vehicle Energy Management System

2009-06-15
2009-01-1772
Eaton has developed a prototype hydraulic hybrid vehicle energy management system that substantially improves fuel economy and reduces harmful emissions. The system was developed cooperatively with the U.S. Environmental Protection Agency (EPA), Navistar Inc., and the U.S. Army. The system has demonstrated fuel economy improvements in real world use of up to 50 percent while simultaneously reducing carbon emissions by up to 30 percent. The first real world application of the technology will be in parcel delivery vehicles owned by United Parcel Service (UPS). The hybrid vehicle energy management system components will be described and principles of operation explained. Major properties of the system will be examined and it will be shown why the hydraulic hybrid system is well suited for the parcel delivery vehicle application. Several secondary beneficial properties of the system will also be discussed.
Technical Paper

Advanced NOx Aftertreatment System Performance Following 150 LNT Desulfation Events

2008-06-23
2008-01-1541
An advanced exhaust aftertreatment system is being developed using a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF) and a selective catalytic reduction (SCR) catalyst arranged in series for both on- and off- highway diesel engines to meet the upcoming emissions regulations. This system utilizes a fuel reformer to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses LNT and SCR catalyst degradation as these were subjected to 150 desulfation events using a pre-production 2007 medium heavy-duty, on-highway diesel engine.
Technical Paper

Application of Spectral-Based Substructuring Approach to Analyze the Dynamic Interactions of Powertrain Structures

2003-05-05
2003-01-1731
A spectral-based substructuring approach applying linear frequency response functions (FRF) is proposed for improving the accuracy of simulating the dynamics of coupled systems. The method also applies a least square singular value decomposition (SVD) scheme to overcome the inherent computational deficiency in the basic substructuring formulation. The computational problem is caused by the magnification of measurement errors during any one of the matrix inversion calculations required for this method. The primary objective of applying this approach is to examine the possibility of analyzing higher frequency response that is normally not possible using conventional modeling technique such as the direct finite and boundary element, and lumped parameter techniques. In this study, additional concepts are also evaluated to quantify the limitations and range of applicability of the proposed substructuring approach for simulating the vibration response of complex powertrain structures.
Technical Paper

Vehicle Dynamometer for Hybrid Truck Development

2002-11-18
2002-01-3129
A special vehicle dynamometer has been developed that allows engineers to evaluate driveline components and control algorithms for advanced, electrically-assisted drive systems on commercial vehicles. This dynamometer allows objective measurements of performance, fuel economy, and exhaust emissions, while the full vehicle is operated over a specified driving cycle. This system can be used to exercise the electric motor, engine, transmission and battery systems on Medium Duty Hybrid Trucks - in regeneration as well as power mode - all indoors and in a controlled, repeatable environment. This paper will provide descriptions of the operating goals, control features, and results of testing with this dynamometer. Once the various parameters have been optimized for fuel and emissions performance in this facility, the vehicle can be evaluated where it counts - on the road.
Technical Paper

Numerical Improvement of ADVISOR for Evaluating Commercial Vehicles with Traditional Powertrain Systems

2007-10-30
2007-01-4208
ADVISOR is a flexible drivetrain analysis tool, developed in MATLAB/Simulink® to compare fuel economy and emissions performance between different drivetrain configurations. This paper reports a couple of numerical issues with application of ADVISOR 2002 to commercial vehicles with traditional powertrain systems. One instance is when ADVISOR model is set up to simulate running a heavy-duty (HD) truck with an automated manual transmission (AMT) on a demanding pickup-delivery duty cycle. The other is highlighted during an analysis of a medium-duty (MD) truck with an automatic transmission (AT) where wide-open throttle, i.e., fast acceleration is requested. These two cases have shown different numerical difficulties by using ADVISOR 2002. Based on studying the details of the models, solutions to these numerical issues are developed. The simulation results will demonstrate the effectiveness of these solutions.
Technical Paper

Multi-Objective Design Optimization Using a Damage Material Model Applied to Light Weighting a Formula SAE Car Suspension Component

2009-04-20
2009-01-0348
The Mississippi State University Formula SAE race car upright was optimized using radial basis function metamodels and an internal state variable (ISV) plasticity damage material model. The weight reduction of the upright was part of a goal to reduce the weight of the vehicle by 25 percent. Using an optimization routine provided an upright design that is lighter that helps to improve vehicle fuel economy, acceleration, and handling. Finite element (FE) models of the upright were produced using quadratic tetrahedral elements. Using tetrahedral elements provided a quick way to produce the multiple FE models of the upright required for the multi-objective optimization. A design of experiments was used to determine how many simulations were required for the optimization. The loads for the simulations included braking, acceleration, and corning loads seen by the car under track conditions.
Journal Article

NOx Performance of an LNT+SCR System Designed to Meet EPA 2010 Emissions: Results of Engine Dynamometer Emission Tests

2008-10-07
2008-01-2642
The paper covers the NOx performance evaluation of an LNT + SCR system designed to meet the 2010 on-highway heavy-duty (HD) US EPA emission standards. The system combines a fuel reformer catalyst (REF), lean NOx trap (LNT), diesel particulate filter (DPF), and selective catalytic reduction (SCR) in series, to reduce engine-out NOx and PM. System NOx reduction performance was verified in an engine dynamometer test cell, using a 2007 7.6L medium-duty engine. System NOx performance was characterized using fresh LNT and SCR along with hydrothermal aged LNT and fresh SCR. Test results show levels consistent with EPA 2010 limits under various test conditions. Catalysts performance was characterized at eight steady engine-operating conditions (A100, B50, B75, A75, B100, C100, C75, C50, across a 13-mode Supplemental Emission Test (SET), and an on-highway Heavy Duty Federal Test Procedure (HD-FTP).
Technical Paper

Nonlinear Modeling of an Electromagnetic Valve Actuator

2006-04-03
2006-01-0043
This paper presents the modeling of an Electromagnetic Valve Actuator (EMV). A nonlinear model is formulated and presented that takes into account secondary nonlinearities like hysteresis, saturation, bounce and mutual inductance. The uniqueness of the model is contained in the method used in modeling hysteresis, saturation and mutual inductance. Theoretical and experimental methods for identifying parameters of the model are presented. The nonlinear model is experimentally validated. Simulation and experimental results are presented for an EMV designed and built in our laboratory. The experimental results show that sensorless estimation could be a possible solution for position control.
X