Refine Your Search



Search Results

Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Journal Article

Direct Injection of High Pressure Gas: Scaling Properties of Pulsed Turbulent Jets

Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
Technical Paper

On-Board Plasma Assisted Fuel Reforming

It is well known that the addition of gaseous fuels to the intake manifold of diesel engines can have significant benefits in terms of both reducing emissions of hazardous gases and soot and improving fuel economy. Particularly, the addition of LPG has been investigated in numerous studies. Drawbacks, however, of such dual fuel strategies can be found in storage complexity and end-user inconvenience. It is for this reason that on-board refining of a single fuel (for example, diesel) could be an interesting alternative. A second-generation fuel reformer has been engineered and successfully tested. The reformer can work with both gaseous and liquid fuels and by means of partial oxidation of a rich fuel-air mix, converts these into syngas: a mixture of H₂ and CO. The process occurs as partial oxidation takes place in an adiabatic ceramic reaction chamber. High efficiency is ensured by the high temperature inside the chamber due to heat release.
Technical Paper

Literature Study and Feasibility Test Regarding a Gasoline/EHN Blend Consumed by Standard CI-Engine Using a Non-PCCI Combustion Strategy

A literature and experimental study was done to create an overview of the behavior of gasoline combusted in a CI-engine. This paper creates a first overview of the work to be done before implementing this Gasoline Compression Ignition concept in a multi-cylinder engine. According to literature the gasoline blend will have advantages over diesel. First the shorter molecular chain of the gasoline makes it less prone to soot. Second the lower density gives the gasoline a higher nozzle exit speed resulting in better mixing capabilities. Third the lower density and higher volatility lets the spray length decrease. This lowers the chance of wall-impingement, but creates worse mixing conditions looking from a spray point of view. The CO and HC emissions tend to increase relative to operation with diesel fuel, NOx emissions largely depend on the choice of combustion strategy and could be influenced by the nitrogen bound to the EHN molecule that is used as an ignition improver.
Technical Paper

Spray Analysis of the PFAMEN Injector

In an earlier study, a novel type of diesel fuel injector was proposed. This prototype injects fuel via porous (sintered) micro pores instead of via the conventional 6-8 holes. The micro pores are typically 10-50 micrometer in diameter, versus 120-200 micrometer in the conventional case. The expected advantages of the so-called Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN) injector are lower soot- and CO2 emissions. However, from previous in-house measurements, it has been concluded that the emissions of the porous injector are still not satisfactory. Roughly, this may have multiple reasons. The first one is that the spray distribution is not good enough, the second one is that the droplet sizing is too big due to the lack of droplet breakup. Furthermore air entrainment into the fuel jets might be insufficient. All reasons lead to fuel rich zones and associated soot formation.
Technical Paper

Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion

The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30 °C. Possibly increasing intake air temperatures could extend the load range. In this study primary reference fuels (PRFs), blends of iso-octane and n-heptane, with octane numbers of 70, 80, and 90 are tested in an adapted commercial diesel engine under partially premixed combustion mode to investigate the potential of these higher octane number fuels in low load and idle conditions. During testing combustion phasing and intake air temperature are varied to investigate the combustion and emission characteristics under low load and idle conditions.
Technical Paper

Numerical Investigation of PPCI Combustion at Low and High Charge Stratification Levels

Partially premixed compression ignition combustion is one of the low temperature combustion techniques which is being actively investigated. This approach provides a significant reduction of both soot and NOx emissions. Comparing to the homogeneous charge compression ignition mode, PPCI combustion provides better control on ignition timing and noise reduction through air-fuel mixture stratification which lowers heat release rate compared to other advanced combustion modes. In this work, CFD simulations were conducted for a low and a high air-fuel mixture stratification cases on a light-duty optical engine operating in PPCI mode. Such conditions for PRF70 as fuel were experimentally achieved by injection timing and spray targeting at similar thermodynamic conditions.
Technical Paper

Performance and Emission Studies in a Heavy-Duty Diesel Engine Fueled with an N-Butanol and N-Heptane Blend

N-butanol, as a biomass-based renewable fuel, has many superior fuel properties. It has a higher energy content and cetane number than its alcohol competitors, methanol and ethanol. Previous studies have proved that n-butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency when blended with diesel. However, most studies on n-butanol are limited to low blending ratios, which restricts the improvement of emissions. In this paper, 80% by volume of n-butanol was blended with 20% by volume of n-heptane (namely BH80). The influences of various engine parameters (combustion phasing, EGR ratio, injection timing and intake pressure, respectively) on its combustion and emission characteristics are tested at different loads. The results showed that when BH80 uses more than 40% EGR, the emitted soot and nitrogen oxides (NOx) emissions are below the EURO VI legislation.
Technical Paper

Oxygenated Fuel Composition Impact on Heavy-Duty Diesel Engine Emissions

This paper reports on a study of a large number of blends of a low-sulfur EN-590 type diesel fuel respectively of a Swedish Class 1 fuel and of a synthetic diesel with different types of oxygenates. Oxygen mass fraction of the blends varied between 0 and 15 %. For comparison, the fuel matrix was extended with non-oxygenated blends including a diesel/water emulsion. Tests were performed on a modern multi-cylinder HD DAF engine equipped with cooled EGR for enabling NOx-levels between 2.0 and 3.5 g/kWh on EN-590 diesel fuel. Additional tests were done on a Volvo Euro-2 type HD engine with very low PM emission. Finally, for some blends, combustion progress and soot illumination was registered when tested on a single cylinder research engine with optical access. The results confirm the importance of oxygen mass fraction of the fuel blend, but at the same time illustrate the effect of chemical structure: some oxygenates are twice as effective in reducing PM as other well-known oxygenates.
Technical Paper

Characterization of Low Load PPC Operation using RON70 Fuels

The concept of Partially Premixed Combustion is known for reduced hazardous emissions and improved efficiency. Since a low-reactive fuel is required to extend the ignition delay at elevated loads, controllability and stability issues occur at the low-load end. In this investigation seven fuel blends are used, all having a Research Octane Number of around 70 and a distinct composition or boiling range. Four of them could be regarded as ‘viable refinery fuels’ since they are based on current refinery feedstocks. The latter three are based on primary reference fuels, being PRF70 and blends with ethanol and toluene respectively. Previous experiments revealed significant ignition differences, which asked for further understanding with an extended set of measurements. Experiments are conducted on a heavy duty diesel engine modified for single cylinder operation. In this investigation, emphasis is put on idling (600 rpm) and low load conditions.
Journal Article

Experimental Validation of Extended NO and Soot Model for Advanced HD Diesel Engine Combustion

A computationally efficient engine model is developed based on an extended NO emission model and state-of-the-art soot model. The model predicts exhaust NO and soot emission for both conventional and advanced, high-EGR (up to 50 %), heavy-duty DI diesel combustion. Modeling activities have aimed at limiting the computational effort while maintaining a sound physical/chemical basis. The main inputs to the model are the fuel injection rate profile, in-cylinder pressure data and trapped in-cylinder conditions together with basic fuel spray information. Obtaining accurate values for these inputs is part of the model validation process which is thoroughly described. Modeling results are compared with single-cylinder as well as multi-cylinder heavy-duty diesel engine data. NO and soot level predictions show good agreement with measurement data for conventional and high-EGR combustion with conventional timing.
Journal Article

Direct Injection of Diesel-Butane Blends in a Heavy Duty Engine

Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles. These (port fuel) systems either vaporize the liquid fuel and then mix it with intake air, or inject fuel into the engine's intake ports. While this concept offers significant fuel cost reductions, for aftermarket certification and large-scale OEM use some concerns are present. Unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions are known to be high because of premixed charge getting trapped into crevices and possibly being blown through during valve-overlap. Apart from the higher emission levels, this also limits fuel efficiency and therefore cost savings.
Technical Paper

Optimization of Operating Conditions in the Early Direct Injection Premixed Charge Compression Ignition Regime

Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) is a widely researched combustion concept, which promises soot and CO2 emission levels of a spark-ignition (SI) and compression-ignition (CI) engine, respectively. Application of this concept to a conventional CI engine using a conventional CI fuel faces a number of challenges. First, EDI has the intrinsic risk of wall-wetting, i.e. collision of fuel against the combustion chamber periphery. Second, engine operation in the EDI regime is difficult to control as auto-ignition timing is largely decoupled from fuel injection timing. In dual-mode PCCI engines (i.e. conventional Dl at high loads) wall-wetting should be prevented by selecting appropriate (most favorable) operating conditions (EGR level, intake temperature, injection timing-strategy etc.) rather than by redesign of the engine (combustion chamber shape, injector replacement etc.).
Technical Paper

Investigation on Differences in Engine Efficiency with Regard to Fuel Volatility and Engine Load

An HSDI Diesel engine was fuelled with standard Swedish environmental class 1 Diesel fuel (MK1), Soy methyl ester (B100) and n-heptane (PRF0) to study the effects of both operating conditions and fuel properties on engine performance, resulting emissions and spray characteristics. All experiments were based on single injection diesel combustion. A load sweep was carried out between 2 and 10 bar IMEPg. For B100, a loss in combustion efficiency as well as ITE was observed at low load conditions. Observed differences in exhaust emissions were related to differences in mixing properties and spray characteristics. For B100, the emission results differed strongest at low load conditions but converged to MK1-like results with increasing load and increasing intake pressures. For these cases, spray geometry calculations indicated a longer spray tip penetration length. For low-density fuels (PRF0) the spray spreading angle was higher.
Technical Paper

Design and Operation of a High Pressure, High Temperature Cell for HD Diesel Spray Diagnostics: Guidelines and Results

This paper first compares strengths and weaknesses of different options for performing optical diagnostics on HD diesel sprays. Then, practical experiences are described with the design and operation of a constant volume test cell over a period of more than five years. In this test rig, pre-combustion of a lean gas mixture is used to generate realistic gas mixture conditions prior to fuel injection. Spray growth, vaporization are studied using Schlieren and Mie scattering experiments. The Schlieren set-up is also used for registration of light emitted by the combustion process; this can also provide information on ignition delay and on soot lift-off length. The paper further describes difficulties encountered with image processing and suggests methods on how to deal with them.
Technical Paper

Modeling of an Automotive Exhaust Gas Converter at Low Temperatures Aiming at Control Application

The LEV/ULEV emission standards pose challenging problems on automotive exhaust gas treatment. This increases the need for good catalytic converter models, which can be applied for control. A dynamic converter model was made on the basis of first principles, accounting for the accumulation of mass in the bulk gas phase, in pores of the washcoat and on the catalytic surface, as well as for the energy accumulation in the gas and solid phase. The basis for the model is the elementary step kinetics of the individual global reactions. The main purpose of the model is to describe the low temperature behavior of the converter, when the majority of the emissions occur. The light-off process is analyzed in detail with different inputs. The biggest improvement occurs when secondary air is injected in front of the converter. The converter model is also coupled with a simple SI engine model to investigate the dynamic behavior of the whole system.
Technical Paper

On a Model-Based Control of a Three-Way Catalytic Converter

Though very important for the system performance, the dynamic behavior of the catalytic converter has mainly been neglected in the design of exhaust emission control systems. Since the major dynamic effects stem from the oxygen storage capabilities of the catalytic converter, a novel model-based control scheme, with the explicit control of the converter's oxygen storage level is proposed. The controlled variable cannot be measured, so it has to be predicted by an on-line running model (inferential sensor). The model accuracy and adaptability are therefore crucial. A simple algorithm for the model parameter identification is developed. All tests are performed on a previously developed first principle model of the catalytic converter so that the controller effectiveness and performance can clearly be observed.
Journal Article

Lignin Derivatives as Potential Octane Boosters

Owing to environmental and health concerns, tetraethyl lead was gradually phased out from the early 1970's to mid-1990's in most developed countries. Advances in refining, leading to more aromatics (via reformate) and iso-paraffins such as iso-octane, along with the introduction of (bio) oxygenates such as MTBE, ETBE and ethanol, facilitated the removal of lead without sacrificing RON and MON. In recent years, however, legislation has been moving in the direction of curbing aromatic and olefin content in gasoline, owing to similar concerns as was the case for lead. Meanwhile, concerns over global warming and energy security have motivated research into renewable fuels. Amongst which are those derived from biomass. The feedstock of interest in this study is lignin, which, together with hemicellulose and cellulose, is amongst the most abundant organic compounds on the planet.
Technical Paper

Gasoline-Diesel Dual Fuel: Effect of Injection Timing and Fuel Balance

Recently, some studies have shown high efficiencies using controlled auto-ignition by blending gasoline and diesel to a desired reactivity. This concept has been shown to give high efficiency and, because of the largely premixed charge, low emission levels. The origin of this high efficiency, however, has only partly been explained. Part of it was attributed to a lower temperature combustion, originating in lower heat losses. Another part of the gain was attributed to a faster, more Otto-like (i.e. constant volume) combustion. Since the concept was mainly demonstrated on one single test setup so far, an experimental study has been performed to reproduce these results and gain more insight into their origin. Therefore one cylinder of a heavy duty test engine has been equipped with an intake port gasoline injection system, primarily to investigate the effects of the balance between the two fuels, and the timing of the diesel injection.
Technical Paper

Review on the Effects of Dual-Fuel Operation, Using Diesel and Gaseous Fuels, on Emissions and Performance

In recent years the automotive industry has been forced to reduce the harmful and pollutant emissions emitted by direct-injected diesel engines. To accomplish this difficult task various solutions have been proposed. One of these proposed solutions is the usage of gaseous fuels in addition to the use of liquid diesel. These gaseous fuels have more gasoline-like properties, such as high octane numbers, and thereby are resistant against auto-ignition. Diesel on the other hand, has a high cetane number which makes it prone to auto-ignition. In this case the gaseous fuel is injected in the inlet manifold, and the diesel is direct injected in the cylinder at the end of the compression stroke. Thereby the diesel fuel spontaneously ignites and acts as an ignition source. The main goals for the use of a dual-fuel operation with diesel and gaseous fuels are the reduction of particulate matter (PM) and nitrogen oxides (NOx) emission.