Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Increasing Machine Service Life of Large Envelope, High Acceleration AFP Machines

2013-09-17
2013-01-2297
Since Automated Fiber Placement (AFP) is used to manufacture twin-aisled commercial aircraft parts, extremely large envelope machines are often required and appropriate. Additionally, for very large parts, the average AFP course length may be on the order of one to two meters, and the part may have numerous contours. With courses of this length, a high acceleration machine is necessary to achieve fast laydown rates because the machine is frequently starting and stopping. Part contour also requires high acceleration machine axes to accurately maintain the AFP tow path at high feedrates. Large machines with high accelerations result in very large loads on bearings. Large loads and the long, high speed axis travels associated with large envelope machines make achieving a long service life difficult. Designing efficient, lightweight machine structures becomes critical to provide long machine service life.
Journal Article

Panel Assembly Line (PAL) for High Production Rates

2015-09-15
2015-01-2492
Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved. This allowed for easier communication and extended development time well into the project.
Journal Article

Body Join Drilling for One-Up-Assembly

2013-09-17
2013-01-2296
Over 1,200 large diameter holes must be drilled into the side-of-body join on a Boeing commercial aircraft's fuselage. The material stack-ups are multiple layers of primarily titanium and CFRP. Due to assembly constraints, the holes must be drilled for one-up-assembly (no disassembly for deburr). In order to improve productivity, reduce manual drilling processes and improve first-time hole quality, Boeing set out to automate the drilling process in their Side-of-Body join cell. Implementing an automated solution into existing assembly lines was complicated by the location of the target area, which is over 15 feet (4 meters) above the factory floor. The Side-of-Body Drilling machines (Figure 1) are capable of locating, drilling, measuring and fastening holes with less than 14 seconds devoted to non-drilling operations. Drilling capabilities provided for holes up to ¾″ in diameter through stacks over 4.5″ thick in a titanium/CFRP environment.
Technical Paper

Coated Rivet Dies: A Dramatic Improvement in Rivet Interference Profile

2016-09-27
2016-01-2084
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the stringer side die dramatically reduces interference at the exit of the stringer, which in some instances resulted in a reduction of over 38%.
Technical Paper

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control

2013-09-17
2013-01-2224
Previous Flex Track drilling systems move along two parallel tracks that conform to the contour of a work piece surface. Until recently, applications have been limited to relatively simple surfaces such as the cylindrical mid-body fuselage join of a commercial aircraft. Recent developments in the state of the art have introduced the 5-axis variant which is capable of precision drilling on complex contours. This paper presents solutions to two positioning challenges associated with this added functionality: the ability to align the spindle axis normal to an angled drilling surface while maintaining accuracy in tool-point position, the ability to maintain synced motion between dual drives on complex track profiles.
Technical Paper

High Volume Automated Spar Assembly Line (SAL)

2017-09-19
2017-01-2073
The decision to replace a successful automated production system at the heart of a high volume aircraft factory does not come easily. A point is reached when upgrades and retrofits are insufficient to meet increasing capacity demands and additional floor space is simply unavailable. The goals of this project were to increase production volume, reduce floor space usage, improve the build process, and smooth factory flow without disrupting today’s manufacturing. Two decades of lessons learned were leveraged along with advancements in the aircraft assembly industry, modern machine control technologies, and maturing safety standards to justify the risk and expense of a ground-up redesign. This paper will describe how an automated wing spar fastening system that has performed well for 20 years is analyzed and ultimately replaced without disturbing the high manufacturing rate of a single aisle commercial aircraft program.
X