Refine Your Search



Search Results

Technical Paper

Improving Flow Uniformity in a Diesel Particulate Filter System

In this study, a simulation-based flow optimization of the diesel particulate filter (DPF) system is performed. The geometry and the swirl component of the inlet flow is optimized to improve flow uniformity upstream of the filter and to decrease overall pressure drop. The flow through the system is simulated with Fluent computational fluid dynamics (CFD) software from Fluent Inc. The wall-flow filter is modeled with an equivalent porous material. This study only investigates the clean flow. The DPF system is composed of three parts: the inlet diffuser, the filter and the outlet nozzle. In the original system a linear cone joins the inlet and outlet pipes to the cylindrical filter. Due to the large opening angle of this cone, flow separates and creates a recirculation zone between the inlet and the filter. The flow pattern reveals that a large area of the filter is not used: More than 88% of the air flow passes through less that 53% of the area.
Technical Paper

Model Identification and Analysis of a High Performance Hydrostatic Actuation System

A hydrostatic actuation system referred to as the Electro Hydraulic Actuator (EHA) has been designed and prototyped. In this paper, a mathematical model of the EHA is reviewed and analyzed. This theoretical analysis is supported by open-loop experimental results that indicate the presence of nonlinearities but at a degree that is considerably less than that of conventional hydraulic systems with servo-valves. The behavior of the system can be approximated as piece-wise linear with the damping ratio and natural frequency changing according to a piece-wise operating region. The EHA model is used in conjunction with experimentation and numerical optimization for quantifying the influence of unknown parameters in this system. A parametric model for the EHA is subsequently proposed and validated.
Technical Paper

Combining Fuel Borne Catalyst, Catalytic Wash Coat and Diesel Particulate Filter

In view of increasing concern over diesel particulates and tightening legislation to control their emission, much work has been done to develop diesel particulate filters (DPFs) and systems to allow them to work reliably. Although a filter will effectively trap solid particles, any material in the vapour phase, such as unburned hydrocarbons, may pass through the filter and subsequently condense. The use of a catalytic wash coat, either on the DPF itself or on a separate substrate, has been proposed to oxidise these hydrocarbons and thus reduce the total material emitted. The use of fuel borne catalysts to aid the regeneration of trapped material within the DPF is also well documented. Such catalyst will also catalyse the oxidation of any hydrocarbons bound up within the particulate. The oxidation of such hydrocarbon occurs at a lower temperature than that of carbon itself, thus allowing lower temperature regeneration of the DPF.
Technical Paper

Injection Molded Hybrid Natural Fibre - Thermoplastic Composites for Automotive Interior Parts

Eco-efficient and cost effective natural fibre - thermoplastic composites have gained attention to a great extent in the automotive industry. Most of the OEM specifications for automotive interior parts, for example, instrument panels, recommend the composite should have a minimum flexural modulus of 1900 MPa, a notched Impact strength greater than 150 J/m at room temperature and a melt flow index of 5 g/10min and above [1, 2 and 3]. The objective of this work was to develop a high performance hybrid composite by injection molding process of the composites made from natural fibre in combination with glass fibre or calcium carbonate in a thermoplastic matrix to meet the specifications required for automotive interior parts applications. Mechanical properties, such as tensile and flexural strengths and moduli of the composites prepared, were found to be highly promising.
Technical Paper

Concurrent Quantitative Laser-Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine

A comparison of scanning mobility particle sizer (SMPS) and laser-induced incandescence (LII) measurements of diesel particulate matter (PM) was performed. The results reveal the significance of the aggregate nature of diesel PM on interpretation of size and volume fraction measurements obtained with an SMPS, and the accuracy of primary particle size measurements by LII. Volume fraction calculations based on the mobility diameter measured by the SMPS substantially over-predict the space-filling volume fraction of the PM. Correction algorithms for the SMPS measurements, to account for the fractal nature of the aggregate morphology, result in a substantial reduction in the reported volume. The behavior of the particulate volume fraction, mean and standard deviation of the mobility diameter, and primary particle size are studied as a function of the EGR for a range of steady-state engine speeds and loads for a turbocharged direct-injection diesel engine.
Technical Paper

The Effects of Nano-clay on Extrusion Microcellular Foaming of Nylon

This paper demonstrates the effects of nano-clay on the microcellular foam processing of nylon. First, Nylon 6 nanocomposites with 1 wt% clay were prepared by a twin screw extruder. The nanocomposite structures were characterized by XRD and TEM. Nylon and its nanocomposites were foamed in extrusion using CO2. The cell morphologies of nylon and its nanocomposite foams were investigated. It appeared that the nano-clay not only enhanced cell nucleation, but also suppressed cell deterioration in the microcellular foaming of nylon.
Technical Paper

Effect of CO2 Content on Foaming Behavior of Recyclable High-Melt-Strength PP

This paper presents an experimental study on the foaming behavior of recyclable high-melt-strength (HMS) branched polypropylene (PP) with CO2 as a blowing agent. The foamability of branched HMS PP has been evaluated using a tandem foaming extruder system. The effects of CO2 and nucleating agent contents on the final foam morphology have been thoroughly investigated. The low density (i.e., 12~14 fold), fine-celled (i.e., 107–109 cells/cm3) PP foams were successfully produced using a small amount of talc (i.e., 0.8 wt%) and 5 wt% CO2.
Technical Paper

Cell Nucleation and Growth Study of PP Foaming with CO2 in a Batch-Simulation System

TPO is being used to make automotive parts for its number of advantages: i) low temperature flexibility and ductility, ii) excellent impact/stiffness/flow balance, iii) excellent weatherability, and iv) free-flowing pellet form for easy processing, storage, and handling. However, by foaming TPO, due to its higher rigidity-to-weigh ratio, it would offer additional advantages over the solid counterparts in terms of reduced weight, reduced material cost, and decreased fuel usage without compromising their performance. Since a major component in TPO is polypropylene (PP), understanding PP foaming behaviours is an important step towards understanding TPO foaming. For foam materials, cell density and cell size are two significant parameters that affect their material properties. In this research, we observed the cell nucleation and initial growth behaviours of PP foams blown with CO2 under various experimental conditions in a batch foaming simulation system.
Technical Paper

Impact of Powertrain Type on Potential Life Cycle Greenhouse Gas Emission Reductions from a Real World Lightweight Glider

This study investigates the life cycle greenhouse gas (GHG) emissions of a set of vehicles using two real-world gliders (vehicles without powertrains or batteries); a steel-intensive 2013 Ford Fusion glider and a multi material lightweight vehicle (MMLV) glider that utilizes significantly more aluminum and carbon fiber. These gliders are used to develop lightweight and conventional models of internal combustion engine vehicles (ICV), hybrid electric vehicles (HEV), and battery electric vehicles (BEV). Our results show that the MMLV glider can reduce life cycle GHG emissions despite its use of lightweight materials, which can be carbon intensive to produce, because the glider enables a decrease in fuel (production and use) cycle emissions. However, the fuel savings, and thus life cycle GHG emission reductions, differ substantially depending on powertrain type. Compared to ICVs, the high efficiency of HEVs decreases the potential fuel savings.
Technical Paper

Modelling and Optimization of Plug Flow Mufflers in Emission Control Systems

Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
Technical Paper

A Chemical-Kinetic Approach to the Definition of the Laminar Flame Speed for the Simulation of the Combustion of Spark-Ignition Engines

The laminar burning speed is an important intrinsic property of an air-fuel mixture determining key combustion characteristics such as turbulent flame propagation. It is a function of the mixture composition (mixture fraction and residual gas mass fraction) and of the thermodynamic conditions. Experimental measurements of Laminar Flame Speeds (LFS) are common in literature, but initial pressure and temperature are limited to low values due to the test conditions: typical pressure values for LFS detection are lower than 25 bar, and temperature rarely exceeds 550 K. Actual trends in spark ignition engines are to increase specific power output by downsizing and supercharging, thus the flame front involves even more higher pressure and temperature since the beginning of combustion.
Technical Paper

Heavy Duty Diesel Engine Modeling with Layered Artificial Neural Network Structures

In order to meet emissions and power requirements, modern engine design has evolved in complexity and control. The cost and time restraints of calibration and testing of various control strategies have made virtual testing environments increasingly popular. Using Hardware-in-the-Loop (HiL), Volvo Penta has built a virtual test rig named VIRTEC for efficient engine testing, using a model simulating a fully instrumented engine. This paper presents an innovative Artificial Neural Network (ANN) based model for engine simulations in HiL environment. The engine model, herein called Artificial Neural Network Engine (ANN-E), was built for D8-600 hp Volvo Penta engine, and directly implemented in the VIRTEC system. ANN-E uses a combination of feedforward and recursive ANNs, processing 7 actuator signals from the engine management system (EMS) to provide 30 output signals.
Technical Paper

Development and Calibration of One Dimensional Engine Model for Hardware-In-The-Loop Applications

The present paper aims at developing an innovative procedure to create a one-dimensional (1D) real-time capable simulation model for a heavy-duty diesel engine. The novelty of this approach is the use of the top-level engine configuration, test cell measurement data, and manufacturer maps as opposite to common practice of utilizing a detailed 1D engine model. The objective is to facilitate effective model adjustments and hence further increase the application of Hardware-in-the-Loop (HiL) simulations in powertrain development. This work describes the development of Fast Running Model (FRM) in GT-SUITE simulation software. The cylinder and gas-path modeling and calibration are described in detail. The results for engine performance and exhaust emissions produced satisfactory agreement with both steady-state and transient experimental data.
Technical Paper

A Statistical Approach to Improve the Accuracy of the DPF Simulation Model under Transient Conditions

Cars with diesel engines are commonly equipped with a Diesel Particulate Filter (DPF) to reduce their emissions of particulate matter (PM). Because the pressure drop within the DPF reduces engine performance, it must be predicted with accuracy. The purpose of this study was to improve the accuracy of a DPF simulation model under transient conditions by parameter optimization. The DPF model under consideration consists of an inlet channel, a cake layer, wall layer, and an outlet channel. The pressure drop is influenced by the location, mass, and density of the deposited soot. Therefore, the model includes the following sub-models: Sub-model 1: Calculates the soot density deposited in the wall layer Sub-model 2: Computes the filtration efficiency and mass of the wall and cake layer Sub-model 3: Calculates the soot density deposited in the cake layer Because the sub-models include some empirical formulae, the first step in refining the model was to optimize their fitting parameters.
Technical Paper

Application of Nonlinear Transformations to A/F Ratio and Speed Control in an IC Engine

This paper presents the first application of the global feedback linearization method to an internal combustion (IC) engine. Through the application of this nonlinear control technique, the nonlinear coupled dynamics of the IC engine are globally linearized and decoupled. This represents a significant advance over previously published control approaches which rely on locally linearized dynamic models. With the IC engine dynamics globally linearized and decoupled, outer-loop controllers can be readily designed using simple linear tracking controller design methods, leading to very good dynamic response of three key IC engine outputs, air/fuel ratio, engine speed and manifold air pressure. In this paper, a standard IC engine model from the literature is first transformed to a controllable canonical form, required for the application of the global feedback linearization methods.
Technical Paper

Fuel Effects on Particulate Matter Emissions Variability from a Gasoline Direct Injection Engine

Particulate matter emissions from gasoline direct injection engines are a concern due to the health effects associated with ultrafine particles. This experimental study investigated sources of particulate matter emissions variability observed in previous tests and also examined the effect of ethanol content in gasoline on particle number (PN) concentrations and particle mass (PM) emissions. FTIR measurements of gas phase hydrocarbon emissions provided evidence that changes in fuel composition were responsible for the variability. Exhaust emissions of toluene and ethanol correlated positively with emitted PN concentrations, while emissions of isobutylene correlated negatively. Exhaust emissions of toluene and isobutylene were interpreted as markers of gasoline aromatic content and gasoline volatility respectively.
Technical Paper

Evaluation of Different Natural Gas Fueling Strategies During Throttle Transients

Throttle tip-in and tip-out tests on a 2.0 litre passenger car engine were performed using four different natural gas fuelling systems an air-valve or variable restriction type mixer, a venturi type mixer, central fuel injection, and port fuel injection. The in-cylinder fuel-air equivalence ratio, ϕ, was measured using a fast response flame ionization detector sampling about 7 mm from the spark plug gap. The data reveal characteristics of each fuel system's in-cylinder fuel-air ratio response and torque response.
Technical Paper

A Mechatronics Approach for the Design of a New High Performance ElectroHydraulic Actuator

This paper describes the design strategy adopted for developing a new high performance actuation system referred to as the ElectroHydraulic Actuator (EHA). The design approach can be divided into fives phases that include: pre-conceptual analysis, conceptual design, preliminary design, detailed design and, integration and test. An important aspect of the design process is the use of modeling and simulation for the analysis, sizing and selection of off-the-shelf parts, and for the detailed design of new custom made components. EHA is based on hydrostatic transmission. It is a unique device with its own characteristics and requires hydraulic components that are specifically tailored to its needs. A prototype of EHA has been produced and has demonstrated an extremely high level of performance. The performance of this prototype complies with design requirements and validates the chosen design approach.
Technical Paper

The Effect of Oxygenated Additives on Soot Precursor Formation in a Counterflow Diffusion Flame

A counter–flow propane/air diffusion flame (ϕ= 1.79) is used for a fundamental analysis of the effects of oxygenated additives on soot precursor formation. Experiments are conducted at atmospheric pressure using Gas Chromatography for gas sample analysis. The oxygenated additives dimethyl carbonate (DMC) and ethanol are added to the fuel keeping the total volumetric fuel flow rate constant. Results show 10 vol% DMC significantly reduces acetylene, benzene, and other flame pyrolysis products. Ethanol (10 vol%) shows, instead, more modest reductions. Peak acetylene and benzene levels decrease as the additive dosage increases for both DMC and ethanol. The additive's effect on the adiabatic flame temperature and the fuel stream carbon content does not correlate significantly with acetylene levels. However, there does appear to be a linear relationship between acetylene concentrations and both the additive's oxygen and C–C bond content.
Technical Paper

An Experimental Investigation into the Characteristics of a Fast-Response Flame Ionization Detector for In-Cylinder Sampling

The Cambustion fast-response flame ionization detector (FFID) has been successfully used for instantaneous exhaust port hydrocarbon (HC) concentration measurement in IC engines for a decade. Measurements of in-cylinder HC concentration have also been made, but these present greater challenge. As the sample transit time and the time constant of the system always change when the sampling pressure is changed, it is necessary to investigate the characteristics of the system before it was used for in-cylinder sampling. A unique method was designed to study the influence of the diameter and length of the transfer sample line and the operating parameters of the FFID on the transit time and time constant. A database of transit time and time constant was built up for different simulated in-cylinder pressures. The database can be used for correcting eventual in-cylinder HC concentration measurement.