Refine Your Search


Search Results

Technical Paper

Heavy-Duty Diesel Combustion Optimization Using Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

A multi-objective genetic algorithm methodology was applied to a heavy-duty diesel engine at three different operating conditions of interest. Separate optimizations were performed over various fuel injection nozzle parameters, piston bowl geometries and swirl ratios (SR). Different beginning of injection (BOI) timings were considered in all optimizations. The objective of the optimizations was to find the best possible fuel economy, NOx, and soot emissions tradeoffs. The input parameter ranges were determined using design of experiment methodology. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. For the optimization of piston bowl geometry, an automated grid generator was used for efficient mesh generation with variable geometry parameters. The KIVA3V release 2 code with improved ERC sub-models was used. The characteristic time combustion (CTC) model was employed to improve computational efficiency.
Technical Paper

Expanding the HCCI Operation With the Charge Stratification

A single cylinder CFR research engine has been run in HCCI combustion mode at the rich and the lean limits of the homogeneous charge operating range. To achieve a variation of the degree of charge stratification, two GDI injectors were installed: one was used for generating a homogeneous mixture in the intake system, and the other was mounted directly into the side of the combustion chamber. At the lean limit of the operating range, stratification showed a tremendous improvement in IMEP and emissions. At the rich limit, however, the stratification was limited by the high-pressure rise rate and high CO and NOx emissions. In this experiment the location of the DI injector was in such a position that the operating range that could be investigated was limited due to liquid fuel impingement onto the piston and liner.
Technical Paper

Thermal Studies in the Exhaust System of a Diesel-Powered Light-Duty Vehicle

This paper is a continuation of an earlier paper, which examined the steady-state internal heat transfer in the exhaust system of a diesel powered, light-duty vehicle. The present paper deals with the heat transfer of the exhaust system during two types of transient testing, as well as, the estimation of the exhaust systems external heat transfer. Transient heat transfer was evaluated using: a simple fuel-step transient under constant speed and the New European Driving Cycle (NEDC). The thermal response of the external walls varied considerably for the various components of the exhaust system. The largest percent difference between the measured temperatures and the corresponding quasi-steady estimates were about 10%, which is attributed to thermal storage. Allowing for thermal storage resulted in an excellent agreement between measurements and analysis.
Technical Paper

A Computational Analysis of Direct Fuel Injection During the Negative Valve Overlap Period in an Iso-Octane Fueled HCCI Engine

This computational study compares predictions and experimental results for the use of direct injected iso-octane fuel during the negative valve overlap (NVO) period to achieve HCCI combustion. The total fuel injection was altered in two ways. First the pre-DI percent, (the ratio of direct injected fuel during the NVO period “pre-DI” to the secondary fuel supplied at the intake manifold “PI”), was varied at a fixed pre-DI injection timing, Secondly the timing of the pre-DI injection was varied while all of the fuel was supplied during the NVO period. A multi-zone, two-dimensional CFD simulation with chemistry was performed using KIVA-3V release 2 implemented with the CHEMKIN solver. The simulations were performed during the NVO period only.
Technical Paper

Experimental Investigation into the Effects of Direct Fuel Injection During the Negative Valve Overlap Period in an Gasoline Fueled HCCI Engine

A single cylinder Yamaha research engine was operated with gasoline HCCI combustion using negative valve overlap (NVO). The injection strategy for this study involved using fuel injected directly into the cylinder during the NVO period (pre-DI) along with a secondary injection either in the intake port (PI) or directly into the cylinder (DI). The effects of timing of the pre-DI injection along with the percent of fuel injected during the pre-DI injection were studied in two sets of experiments using secondary PI and DI injections in separate experiments. Results have shown that by varying the pre-DI timing and pre-DI percent the main HCCI combustion timing can be influenced as a result of varied heat release during the negative valve overlap period along with hypothesized varied degrees of reformation of the pre-DI injected fuel. In addition to varying the main combustion timing the ISFC, emissions and combustion stability are all influenced by changes in pre-DI timing and percent.
Technical Paper

Effects of Piston Crevice Flows and Lubricant Oil Vaporization on Diesel Engine Deposits

The effect of piston ring pack crevice flow and lubricant oil vaporization on heavy-duty diesel engine deposits is investigated numerically using a multidimensional CFD code, KIVA3V, coupled with Chemkin II, and computational grids that resolve part of the crevice region appropriately. Improvements have been made to the code to be able to deal with the complex geometry of the ring pack, and sub-models for the crevice flow dynamics, lubricating oil vaporization and combustion, soot formation and deposition were also added to the code. Eight parametric cases were simulated under reacting conditions using detailed chemical kinetics to determine the effects of variations of lube-oil film thickness, distribution of the oil film thickness, number of injection pulses, and the main injection timing on engine soot deposition. The results show that crevice-borne hydrocarbon species play an important role in deposit formation on crevice surfaces.
Technical Paper

Dynamic Piston Position Measurements Using a Laser Range-Finding Technique

A nonintrusive diagnostic technique has been developed by which dynamic axial piston-position and tilt-angle measurements have been made in a single-cylinder research engine. A laser beam, introduced into the combustion chamber through an optical port in the cylinder head, was reflected by a polished surface on the piston crown. Motion of the reflected beam, carrying with it information on piston position and piston tilt, was monitored by a set of receiving optics. Piston motion was studied as a function of both engine speed and cylinder pressure (i.e., piston loading.) Measured axial piston-position was found to deviate from the theoretical position calculated from the measured crank-shaft position owing to the effects of tilt and piston loading. Furthermore, evidence of piston veer (tilt of the piston in a plane parallel to the axis of the wrist pin) was observed, which had an effect on the accuracy of the axial piston-position measurement.
Technical Paper

The Effects of Exhaust Gas Recirculation in Utility Engines

The effects of residual gas mixing were studied in a single-cylinder, air-cooled utility engine using both external exhaust gas recirculation (EGR) and internal residual retention. EGR was introduced far upstream of the throttle to ensure proper mixing. Internal residual was changed by varying the length of the valve overlap period. EGR was measured in the intake system; the total in-cylinder diluent was directly measured using a skip-fire, cylinder dumping technique. A sweep of diluent fraction was performed at different engine speeds, engine loads, fuel mixture preparation systems, and ignition timings. An optimum level of diluent, where the combined hydrocarbon and NOx emissions were minimal, was found to exist for each operating condition. Higher levels of diluent, either through internal retention or external recirculation, caused the combined emissions to increase.
Technical Paper

Discussion of the Role of Fuel-Oil Diffusion in the Hydrocarbon Emissions from a Small Engine

The contribution of fuel adsorption in engine oil and its subsequent desorption following combustion to the engine-out hydrocarbon (HC) emissions of a spark-ignited, air-cooled, V-twin utility engine was studied by comparing steady state and cycle-resolved HC emission measurements from operation with a standard full-blend gasoline, and with propane, which has a low solubility in oil. Experiments were performed at two speeds and three loads, and for different mean crankcase pressures. The crankcase pressure was found to impact the HC emissions, presumably through the ringpack mechanism, which was largely unaltered by the different fuels. The average and cycle-resolved HC emissions were found to be in good agreement, both qualitatively and quantitatively, for the two fuels. Further, the two fuels showed the same response to changes in the crankcase pressure. The solubility of propane in the oil is approximately an order of magnitude lower than for gasoline.
Technical Paper

Modeling of a Turbocharged DI Diesel Engine Using Artificial Neural Networks

Artificial neural networks (ANN) have been recognized as universal approximators for nonlinear continuous functions and actively applied in engine research in recent years [1, 2, 3, 4, 5, 6, 7 and 8]. This paper describes the methodology and results of using the ANN to model a turbocharged DI diesel engine. The engine was simulated using the CFD code (KIVA-ERC) over a wide range of operating conditions, and numerical simulation results were used to train the ANN. An efficient data collection methodology using the Design of Experiments (DOE) techniques was developed to select the most characteristic engine operating conditions and hence the most informative data to train the ANN. This approach minimizes the time and cost of collecting training data from either computational or experimental resources. The trained ANN was then used to predict engine parameters such as cylinder pressure, cylinder temperature, NOx and soot emissions, and cylinder heat transfer.
Technical Paper

An Investigation Into the Effect of Fuel Composition on HCCI Combustion Characteristics

A single cylinder CFR research engine has been run in HCCI combustion mode for a range of temperatures and fuel compositions. The data indicate that the best HCCI operation, as measured by a combination of successful combustion with low ISFC, occurs at or near the rich limit of operation. Analysis of the pressure and heat release histories indicated the presence, or absence, and impact of the fuel's NTC ignition behavior on establishing successful HCCI operation. The auto-ignition trends observed were in complete agreement with previous results found in the literature. Furthermore, analysis of the importance of the fuel's octane sensitivity, through assessment of an octane index, successfully explained the changes in the fuels auto-ignition tendency with changes in engine operating conditions.
Technical Paper

Development of a Simple Model to Predict Spatial Distribution of Cycle-Averaged Wall Heat Flux Using Artificial Neural Networks

The KIVA 3V code has been applied to predict combustion chamber heat flux in an air-cooled utility engine. The KIVA heat flux predictions were compared with experimentally measured data in the same engine over a wide range of operating conditions. The measured data were found to be approximately two times larger than the predicted results, which is attributed to the omission of chemical heat release in the near-wall region for the heat transfer model applied. Modifying the model with a simple scaling factor provided a good comparison with the measured data for the full range of engine load, heat flux sensor location, air-fuel ratio and spark timings tested. The detailed spatially resolved results of the KIVA predictions were then used to develop a simplified model of the combustion chamber temporally integrated heat flux using an artificial neural network (ANN).
Technical Paper

Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD

Detailed chemical kinetics was implemented in the KIVA-3V multidimensional CFD code to study the combustion process in Homogeneous Charge Compression Ignition (HCCI) engines. The CHEMKIN code was implemented such that the chemistry and flow solutions were coupled. Detailed reaction mechanisms were used to simulate the fuel chemistry of ignition and combustion. Effects of turbulent mixing on the reaction rates were also considered. The model was validated using the experimental data from two modified heavy-duty diesel engines, including a Volvo engine and a Caterpillar engine operated at the HCCI mode. The results show that good levels of agreement were obtained using the present KIVA/CHEMKIN model for a wide range of engine conditions, including various fuels, injection systems, engine speeds, and EGR levels. Ignition timings were predicted well without the need to adjust any kinetic constants.
Technical Paper

Multidimensional Modeling of the Effects of Radiation and Soot Deposition in Heavy-duty Diesel Engines

A radiation model based on the Discrete Ordinates Method (DOM) was incorporated into the KIVA3v multidimensional code to study the effects of soot and radiation on diesel engine performance at high load. A thermophoretic soot deposition model was implemented to predict soot concentrations in the near-wall region, which was found to affect radiative heat flux levels. Realistic, non-uniform combustion chamber wall surface temperature distributions were predicted using a finite-element-based heat conduction model for the engine metal components that was coupled with KIVA3v in an iterative scheme. The more accurate combustion chamber wall temperatures enhanced the accuracy of both the radiation and soot deposition models as well as the convective heat transfer model. For a basline case, (1500 rev/min, 100% load) it was found that radiation can account for as much as 30% of the total wall heat loss and that soot deposition in each cycle is less than 3% of the total in-cylinder soot.
Technical Paper

Gas Temperature Measurements During Ignition in an HCCI Engine

Bulk gas temperature in an HCCI engine was measured using a novel optical sensing technique. A wavelength-agile absorption sensor using a fiber-coupled LED was used to measure the in-cylinder gas temperature. H2O absorption spectra spanning 1380-1420nm were recorded once every 63 μs using this sensor. The gas temperature was inferred from a least-squares fit of the integrated absorbance areas of H2O absorption features in this spectral region to those from simulated spectra. The primary source of the H2O was the humidity in the intake air. Measurements were made during the compression and early portion of the combustion phase of an n-heptane fueled HCCI engine. The measured pressure-temperature history was compared to kinetic calculations of the ignition delay, and showed the traversal of the negative temperature coefficient regime.
Technical Paper

An Experimental and Numerical Study of Injector Behavior for HSDI Diesel Engines

An experimental and numerical characterization has been conducted for high-pressure hydraulically actuated fuel injection systems. One single and one double-guided multi-hole Valve-Covered-Orifice (VCO) type injector was used with a Common Rail (CR) injection system, and two mini-sac injectors for Hydraulic electronic Unit Injection system (HEUI) were used with different orifice diameters. The purpose of the study was to explore the effects of the injection system and the operating conditions on the engine emissions for a direct injection small bore diesel engine. The diesel spray was injected into a pressurized chamber with optical access at ambient temperature. The gas density inside the chamber was representative of the density in a High Speed Direct Injection (HSDI) diesel engine at the time of injection. The experimental spray parameters included: injection pressure, injection duration, nozzle type, and nozzle diameter.
Technical Paper

Split-Spray Piston Geometry Optimized for HSDI Diesel Engine Combustion

A combustion chamber geometry design optimization study has been performed on a high-speed direct-injection (HSDI) automotive diesel engine at a part-load medium-speed operating condition using both modeling and experiments. A model-based optimization was performed using the KIVA-GA code. This work utilized a newly developed 6-parameter automated grid generation technique that allowed a vast number of piston geometries to be considered during the optimization. Other salient parameters were included that are known to have an interaction with the chamber geometry. They included the start of injection (SOI) timing, swirl ratio (SR), exhaust gas recirculation percentage (EGR), injection pressure, and the compression ratio (CR). The measure of design fitness used included NOx, soot, unburned hydrocarbon (HC), and CO emissions, as well as the fuel consumption. Subsequently, an experimental parametric study was performed using the piston geometry found by the numerical optimization.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

Integration of Diesel Engine, Exhaust System, Engine Emissions and Aftertreatment Device Models

An overall diesel engine and aftertreatment system model has been created that integrates diesel engine, exhaust system, engine emissions, and diesel particulate filter (DPF) models using MATLAB Simulink. The 1-D engine and exhaust system models were developed using WAVE. The engine emissions model combines a phenomenological soot model with artificial neural networks to predict engine out soot emissions. Experimental data from a light-duty diesel engine was used to calibrate both the engine and engine emissions models. The DPF model predicts the behavior of a clean and particulate-loaded catalyzed wall-flow filter. Experimental data was used to validate this sub-model individually. Several model integration issues were identified and addressed. These included time-step selection, continuous vs. limited triggering of sub-models, and code structuring for simulation speed. Required time-steps for different sub models varied by orders of magnitude.
Technical Paper

Steady-State Thermal Flows in an Air-Cooled, Four-Stroke Spark-Ignition Engine

Measurements of the instantaneous heat flux at three positions on the cylinder head surface, and the steady-state cylinder head temperatures at four positions on the cylinder head have been obtained. Engine tests were performed for a range of air-fuel ratios including regimes rich of stoichiometric, stoichiometric, and lean of stoichiometric. In addition, ignition timing was advanced in increments from 22° BTDC to 40° BTDC. All tests were run with the throttle either fixed in the wide open position, or fixed in a position that produced 75% of the maximum power with the standard ignition timing and an air-fuel ratio of 13.5. This was done to ensure that changes in air mass flow rate were not influencing the results. In addition, all tests were performed with a fuel mixture preparation being provided by system designed to deliver a homogeneous premixed charge to the inlet port. This was done to ensure that mixture preparation issues were not confounding the results.