Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

SIMON: A New Vehicle Simulation Model for Vehicle Design and Safety Research

SIMON is a new vehicle dynamic simulation model. Applications for SIMON include single- and multi-unit vehicle handling simulation in severe limit maneuvers (including rollovers) and 3-dimensional environments. Applications also include vehicle-to-vehicle and vehicle-to-barrier collisions. This paper provides the technical background for the SIMON engineering model. The 3-dimensional equations of motion used by the model are presented and explained in detail. The calculations for suspension, tire, collision, aerodynamic and inter-vehicle connection forces and moments are also developed. The integration of features available in the HVE Simulation Environment, such as DyMESH, the Driver Model, Brake Designer and Steer Degree of Freedom, is also explained. Finally, assumptions and limitations of the model are presented.
Technical Paper

Applications and Limitations of 3-Dimensional Vehicle Rollover Simulation

Vehicle crashes often involve rollover. A vehicle rollover is a complex, 3-dimensional event that is quite difficult to model successfully. As a result, crash investigators often make simplifying assumptions that compromise the quality of the information learned from the analysis. Advances in vehicle simulation modeling have greatly reduced the amount of work required to perform rollover simulations. Rollover simulation holds promise as a tool to learn more about crashes involving rollover. This paper describes how the EDVSM simulation model calculates 3-dimensional forces and moments on the sprung mass (i.e., body exterior) and how these forces and moments are integrated into the equations of motion. The paper also provides some examples of the use of rollover simulation. Finally, the paper addresses the practical and theoretical limitations of rollover simulation as a tool for routine reconstruction of on-road and off-road crashes. VEHICLE ROLLOVER is a significant safety problem.
Technical Paper

The Simulation of Driver Inputs Using a Vehicle Driver Model

Traditional vehicle simulations use two methods of modeling driver inputs, such as steering and braking. These methods are broadly categorized as “Open Loop” and “Closed Loop”. Open loop methods are most common and use tables of driver inputs vs time. Closed loop methods employ a mathematical model of the driving task and some method of defining an attempted path for the vehicle to follow. Closed loop methods have a significant advantage over open loop methods in that they do not require a trial-and-error approach normally required by open loop methods to achieve the desired vehicle path. As a result, closed loop methods may result in significant time savings and associated user productivity. Historically, however, closed loop methods have had two drawbacks: First, they require user inputs that are non-intuitive and difficult to determine. Second, closed loop methods often have stability problems.
Technical Paper

Integrating Design and Virtual Test Environments for Brake Component Design and Material Selection

A new, systematic approach to the design-evaluation-test product development cycle is described wherein the vehicle design and simulation environments are integrated. This methodology is applied to brake mechanical design and material selection. Time-domain computations within a vehicle dynamic simulation environment account for brake and lining geometry and material properties, actuator properties, and temperature effects. Two examples illustrate the utility of this approach by examining: the effect of varying hydraulic cylinder diameter on passing federally mandated stopping distance tests, and the effect of S-cam actuator adjustment on the performance of air brakes on a tractor-trailer. The simulation results are compared with experimental vehicle stopping distance tests to assess the validity of the simulations.
Technical Paper

Vehicle Design Evaluation Using The Digital Proving Ground

Recent advancements in three-dimensional digital terrain mapping and vehicle simulation technology present an opportunity to introduce “real-world feedback” early in the design process. Designers of suspension, braking, steering and safety systems can evaluate and optimize designs using computer simulation of a vehicle on the digital proving ground (DPG). A range of possible design behaviors can be identified and analyzed prior to expensive prototyping and testing. Even a series of specific test maneuvers may be evaluated prior to actual testing to ensure safety of the driver and prototype vehicle. As a result, the design process is more efficient and the use of the actual proving ground is more cost effective. This paper presents an overview of the use of the digital proving ground for vehicle design evaluation. Several examples of digital proving ground tests will be discussed.
Technical Paper

Validation of the SIMON Model for Vehicle Handling and Collision Simulation - Comparison of Results with Experiments and Other Models

SIMON is a new 3-dimensional vehicle dynamic simulation model. The capabilities of the model include non-linear handling maneuvers and collision simulation for one or more vehicles. As a new model, SIMON must be validated by comparison against actual handling and collision experiments. This paper provided that comparison. Included in the validation were lane-change maneuvers, alternate ramp traversals, limit maneuvers with combined braking and steering, vehicle-to-vehicle crash tests and articulated vehicle handling tests. Comparison against other models were included. No metric was provided for handling test comparisons. However, statistical analysis of the collision test results revealed the average path range error was 6.2 to 14.8 percent. The average heading error was -4.7 to 0.7 percent. Delta-V error was -1.6 to 7.5 percent. VEHICLE SIMULATION has many uses in the vehicle design and safety industries.
Technical Paper

Differences Between EDVDS and Phase 4

Motor vehicle safety researchers have used the Phase 4 vehicle simulation model for several years. Because of its popularity and ability to simulate the 3-dimensional dynamics of commercial vehicles (large trucks and truck tractors towing up to three trailers), the Phase 4 model was ported to the HVE simulation platform. The resulting model is called EDVDS (Engineering Dynamics Vehicle Dynamics Simulator). This paper describes the procedures used in porting Phase 4 to the HVE platform. As a result of several assumptions made during the development of Phase 4, the port to EDVDS required substantial changes. The most significant modeling difference is the removal of the small angle assumption, allowing researchers to study complete vehicle rollover. Also significant is EDVDS’s use of HVE’s Get Surface Info () function, allowing the vehicles’ tires to travel over any 3-D terrain of arbitrary complexity. These and other changes in the model are described in the paper.