Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Evaluation of Durable Emission Controls for Large Nonroad SI Engines

2002-05-06
2002-01-1752
The Environmental Protection Agency (EPA) is developing emission standards for nonroad spark-ignition engines rated over 19 kW. Existing emission standards adopted by the California Air Resources Board for these engines were derived from emission testing with new engines, with an approximate adjustment applied to take deterioration into account. This paper describes subsequent testing with two LPG-fueled engines that had accumulated several thousand hours of operation with closed-loop control and three-way catalysts. These engines were removed from forklift trucks for characterization and optimization of emission levels. Emissions were measured over a wide range of steady-state points and several transient duty cycles. Optimized emission levels from the aged systems were generally below 1.5 g/hp-hr THC+NOx and 10 g/hp-hr CO.
Technical Paper

Design of a High Compression, Direct-Injection, Spark-Ignition, Methanol Fueled Research Engine with an Integral Injector-Ignition Source Insert

2001-09-24
2001-01-3651
A stratified charge research engine and test stand were designed and built for this work. The engine was designed to exhibit some of the desirable traits of both the premixed charge gasoline engine and modern diesel engine. This spark ignition engine is fueled by M100 (99.99% pure methanol), operates under high compression (19.3:1) and uses direct fuel injection to form a stratification of the fuel-air mixture in the cylinder. The beginning of the combustion event of the stratified mixture is triggered by spark plug discharge. The primary goal of this project was to evaluate the feasibility of using a removable integral injector ignition source insert, which allows a convenient method of changing the relative location of the fuel injector to the ignition source, as well as the compression ratio, squish height, and bowl volumes. This paper provides an explanation of the hardware included in the experimental setup of the engine and selection of the direct injector configuration.
Technical Paper

A Demonstration of Simultaneous Infrared and Visible Imaging Techniques with Pressure Data in an Optically Accessible Diesel Engine Operating at Part Load with High EGR

2011-04-12
2011-01-1395
This work presents a method for simultaneously capturing visible and infrared images along with pressure data in an optical Diesel engine based on the International 4.5L VT275 engine. This paper seeks to illustrate the merits of each imaging technique for visualizing both in-cylinder fuel spray and combustion. The engine was operated under a part load, high simulated exhaust gas recirculation operating condition. Experiments examining fuel spray were conducted in nitrogen. Overlays of simultaneously acquired infrared and visible images are presented to illustrate the differences in imaging between the two techniques. It is seen that the infrared images spatially describe the fuel spray, especially fuel vapors, and the fuel mixing process better than the high-speed visible images.
Technical Paper

Emission Effects of Shell LOW NOX Fuel on a 1990 Model Year Heavy Heavy-Duty Diesel Engine

1996-10-01
961973
The Environmental Protection Agency (EPA) recently tested a clean diesel fuel developed by Dion & Sons for use in stationary sources. This fuel is known as Amber 363 in Southern California and its technology is licensed outside of the Southern California area to Shell Oil Products Company for use as a stationary source fuel. The fuel, hereafter referred to as “Shell LOW NOX Fuel,” was tested in a 1990 model year heavy heavy-duty diesel engine using both the transient Federal Test Procedure (FTP) for on-highway heavy-duty engines, the steady-state FTP for nonroad heavy-duty engines, and the steady-state generator set test cycle. For each test, EPA measured hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NOx) and particulate matter (PM) emissions. Transient testing showed that the Shell LOW NOX Fuel lowers NOx, HC and PM emissions with no statistically significant change in CO emissions for both cold-starts and hot-starts when compared to diesel certification test fuel.
Technical Paper

Passenger Car Fuel Economy Trends Through 1976

1975-02-01
750957
The fuel economy data compiled by the U.S. Environmental Protection Agency (EPA) have been analyzed to determine the trends in passenger car fuel economy beginning with model year 1957. This paper adds the 1976 model year data to the historical trend and concentrates on comparisons between the 1976 and 1975 models. Calculation procedures which allow the changes in fuel economy to be determined separately for system optimization, new engine/vehicle combinations, and model mix shifts have been employed in the analysis which compares 1976 models with 1975 models. A wide range of percentage changes was seen for the fifteen manufacturers who were certified in time to be included in the analysis performed for this paper. The net change in fuel economy for the 1976 new car fleet has been estimated at +12.8% compared to the 1975 new car fleet. System optimization is responsible for 8.8% of the improvement and model mix shifts are projected to account for +3.1% of the change.
Technical Paper

Fuel Economy of the 1975 Models

1974-02-01
740970
The fuel economy data obtained from the emission tests run by the U.S. Environmental Protection Agency (EPA) have been used to show passenger car fuel economy trends from model year 1957 to present. This paper adds the 1975 model year to the historical trend and concentrates on comparisons between the 1975 and 1974 models. Methodologies which allow different 1975 vs 1974 comparisons to be made have been developed. These calculation procedures allow the changes in fuel economy to be determined separately for emission control systems, new engine-vehicle combinations and model mix shifts. Comparisons have been calculated not only for the fleet as a whole but for each of the 13 manufacturers who were certified as of the time this paper was prepared. The net change in fuel economy for the fleet has been estimated at +13.8% comparing the 1975 models to the 1974 models assuming no model mix change occurs.
Technical Paper

Test Variability of Emission and Fuel Economy Measurements Using The 1975 Federal Test Procedure

1974-02-01
741035
Several sets of repetitive test data using the 1975 Federal Test Procedure ('75 FTP) have been analyzed to establish the variability of each component measured during each phase of the test. The variability characteristics of four different emission control systems have been discussed and compared. The overall variabilities of the '75 FTP composite values have been assessed at ±6% for hydrocarbons and CO, ±3% for NOx, and ±1% for CO2. The extremely repeatable behavior of the CO2 emissions is utilized to calculate the fuel economy during the test. This calculation is discussed and some fuel economy results from repetitive tests are presented.
Technical Paper

Emissions from In-Use 1970-1971 Diesel-Powered Trucks and Buses

1974-02-01
741006
A fleet of 64 heavy-duty 1970-71 model trucks and buses powered by a variety of diesel engines were tested periodically to determine exhaust smoke behavior. Smoke tests were made when the vehicle was new or nearly new and at four month intervals thereafter, or until 160,934 km (100,000 miles) odometer reading was reached. Gaseous emissions of hydrocarbon (HC), carbon monoxide (CO), and nitric oxide (NO) were measured at one point early in the project. Both smoke and gaseous emission tests were performed with chassis versions of the engine dynamometer Federal Test Procedures (FTP). Results in terms of “a” (acceleration), “b” (lugging), and “c” (peak) smoke factors versus mileage are reported for the 13 engine-vehicle-application groupings.
Technical Paper

A Characterization of Exhaust Emissions from Lean Burn, Rotary, and Stratified Charge Engines

1977-02-01
770301
This paper reports the results of an exhaust emissions characterization from the non-catalyst control systems employed on the Mazda RX-4 rotary, the Honda CVCC, and the Chrysler electronic lean burn. Throughout the paper, exhaust emissions from these vehicles are compared to those from a Chrysler equipped with an oxidation catalyst and an air pump. The emissions characterized are carbon monoxide, hydrocarbons, nitrogen oxides, sulfur dioxide, sulfates, hydrogen sulfide, carbonyl sulfide, hydrogen cyanide, aldehydes, particulate matter, and detailed hydrocarbons. A brief description of the sampling and analysis procedures used is included within the discussion.
Technical Paper

Predictive GT-Power Simulation for VNT Matching to EIVC Strategy on a 1.6 L Turbocharged GDI Engine

2019-04-02
2019-01-0192
The use of early intake valve closing (EIVC) can lead to improvements in spark-ignition engine efficiency. One of the greatest barriers facing adoption of EIVC for high power-density applications is the challenge of boosting as EIVC strategies reduce volumetric efficiency. Turbochargers with variable nozzle turbines (VNT) have recently been developed for gasoline applications operating at high exhaust gas temperatures. The use of a single VNT as a boost device may provide a lower-cost option compared to two-stage boosting systems or 48 V electronic boost devices for some EIVC applications. A predictive model was created based on engine testing results from a 1.6 L turbocharged gasoline direct injection engine [1]. The model was tuned so that it predicted burn-rates and end-gas knock over an engine operating map with varying speeds, loads, compression ratios and fuel types.
X