Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Transmission Mount Assembly Modelling for Load Simulation and Analysis

2007-04-16
2007-01-1348
Transmission mounts are usually tested as an assembly and typically only translational stiffnesses are provided. The torsional stiffness of the assembly is traditionally estimated based on experience in load simulation and analysis. This paper presents a procedure to estimate the torsional stiffness of the transmission mount assembly by using the test data. The effects of the torsional stiffness on the simulation results are also discussed.
Technical Paper

Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting

2009-05-19
2009-01-2233
The efficiency of a gap-type of deflector for suppressing vehicle sunroof buffeting is studied in this work. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using a CFD/CAA numerical method based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution. In this study the same gap-type deflector configuration is installed on two different types of vehicles, a SUV and a sedan.
Technical Paper

Long Term Transient Cooling of Heavy Vehicle Cabin Compartments

2010-10-05
2010-01-2018
A newly developed simulation methodology for a long term, transient tractor cabin cool-down is presented in this paper. The air flow was simulated using a Lattice-Boltzmann Equation (LBE) based 3-dimensional flow solver. The conduction and radiation effects on the solid parts as well as the average cabin air temperature evolution were solved by the thermal solver, which also includes a human comfort model. The simulation results were compared with the measured experimental test data and good agreement was observed validating the developed simulation approach. The developed methodology can be applied to all other ground vehicles cabin comfort applications.
Technical Paper

Optimization of Aerodynamics and Engine Cooling Performance of a JMC Mid-Size Truck using Simulation

2010-10-05
2010-01-2032
The engineering process in the development of commercial vehicles is facing more and more stringent emission regulations while at the same time the market demands for better performance but with lower fuel consumption and higher reliability. Respective targets require better utilization of existing or even higher engine cooling capacity and optimization of aerodynamic performance for reduced drag. In order to aid on achieving both goals, special attention should be paid on understanding both external and under hood flow structures. This paper describes an optimization study for reducing aerodynamic drag and increasing engine cooling performance conducted on a Light Truck at Jiangling Motors Corporation (JMC). The approach is using simulation based on a LBM solver coupled with a heat exchanger model. Such methodology was used to predict both aerodynamic and cooling characteristics and help highlighting potential areas for improvement.
Technical Paper

Aerodynamic Study of a Production Tractor Trailer Combination using Simulation and Wind Tunnel Methods

2010-10-05
2010-01-2040
The importance of fuel economy and emission standards has increased rapidly with high fuel costs and new environmental regulations. This requires analysis techniques capable of designing the next generation long-haul truck to improve both fuel efficiency and cooling. In particular, it is important to have a predictive design tool to assess how exterior design changes impact aerodynamic performance. This study evaluates the use of a Lattice Boltzmann based numerical simulation and the National Research Council (NRC) Canada's wind tunnel to assess aerodynamic drag on a production Volvo VNL tractor-trailer combination. Comparisons are made between the wind tunnel and simulation to understand the influence of wind tunnel conditions on truck aerodynamic performance. The production VNL testing includes a full range of yaw angles to demonstrate the influence of cross wind on aerodynamic drag.
Technical Paper

Friction Measurement in the Valve Train with a Roller Follower

1994-03-01
940589
The valve train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod forces, and cam speed. Results are presented for one exhaust valve of a motored Cummins L-10 engine. The instantaneous cam/roller friction force was determined from the instantaneous roller speed and the pin friction torque. The pushrod force and displacement were also measured. Friction work loss was determined for both cam and roller interface as well as the upper valve train which includes the valve pushrod, rocker arm, valve guide, and valve. Roller follower slippage on the cam was also determined. A kinematic analysis with the measured data provided the normal force and contact stress at cam/roller interface.(1) Finally, the valve train friction was found to be in the mixed lubrication regime.(2) Further efforts will address the theoretical analysis of valve train friction to predict roller slippage.
Technical Paper

Effect of Road Excitations on Driveline Output Torque Measurements

2011-05-17
2011-01-1538
This paper presents the characterization of the random noise in driveline output shaft torque measurements that is commonly induced by road disturbances. To investigate the interaction between the shaft torque and road side excitation, torque signals are measured using a magnetoelastic torque sensor, as well as a conventional strain gauge sensor, under various types of road surfaces and conditions such as unevenness. A generalized de-trending method for producing a stationary random signal is first conducted. Statistical methods, in particular the probability density function and transform technique, are utilized to provide an evident signature for identifying the road excitation effect on the vehicle output shaft torque. Analysis results show how the road surface can act as a disturbance input to the vehicle shaft torque.
Technical Paper

A Computational Approach to Evaluate the Vehicle Interior Noise from Greenhouse Wind Noise Sources - Part II

2011-05-17
2011-01-1620
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (≻ 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. This paper presents a computational approach that can be used to predict the vehicle interior noise from the greenhouse wind noise sources, during the early stages of the vehicle developmental process so that design changes can be made to improve the wind noise performance of the vehicle.
Journal Article

Numerical Simulations and Measurements of Mirror-Induced Wind Noise

2009-05-19
2009-01-2236
The high cost and competitive nature of automotive product development necessitates the search for less expensive and faster methods of predicting vehicle performance. Continual improvements in High Performance Computing (HPC) and new computational schemes allow for the digital evaluation of vehicle comfort parameters including wind noise. Recently, the commercially available Computational Fluid Dynamics (CFD) code PowerFlow, was evaluated for its accuracy in predicting wind noise generated by an external automotive tow mirror. This was accomplished by running simulations of several mirror configurations, choosing the quietest mirror based on the predicted performance, prototyping it, and finally, confirming the prediction with noise measurements taken in an aeroacoustic wind tunnel. Two testing methods, beam-forming and direct noise measurements, were employed to correlate the physical data with itself before correlating with simulation.
Journal Article

Simulation of Cooling Airflow and Surface Temperature of a Midsize Truck

2009-10-06
2009-01-2894
This paper presents a simulation of the cooling airflow and surface temperatures of a midsize truck. The simulation uses full detailed geometry of the truck. Performance of the under-hood cooling airflow is analyzed and potential design changes leading to better cooling airflow are highlighted. Surface temperature over certain under-hood part is studied. Possible optimizations using various material and configurations are proposed. It is shown that the presented simulation approach provides valuable information to evaluate cooling system and thermal protection performance. Fast design iterations can be achieved using this approach.
Technical Paper

Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method

2018-04-03
2018-01-1287
Exhaust systems are a necessary solution to reduce combustion engine noise originating from flow fluctuations released at each firing cycle. However, exhaust systems also generate a back pressure detrimental for the engine efficiency. This back pressure must be controlled to guarantee optimal operating conditions for the engine. To satisfy both optimal operating conditions and optimal noise levels, the internal design of exhaust systems has become complex, often leading to the emergence of undesired noise generated by turbulent flow circulating inside a muffler. Associated details needed for the manufacturing process, such as brackets for the connection between parts, can interact with the flow, generating additional flow noise or whistles. To minimize the risks of undesirable noise, multiple exhaust designs must be assessed early to prevent the late detection of issues, when design and manufacturing process are frozen. However, designing via an experimental approach is challenging.
Technical Paper

Simulation-Driven Process to Evaluate Vehicle Integration Aspects in Brake Thermal Design

2017-05-24
2017-36-0011
Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
Technical Paper

Numerical Investigation of Wiper Drawback

2019-04-02
2019-01-0640
Windscreen wipers are an integral component of the windscreen cleaning systems of most vehicles, trains, cars, trucks, boats and some planes. Wipers are used to clear rain, snow, and dirt from the windscreen pushing the water from the wiped surface. Under certain conditions however, water which has been driven to the edge of the windscreen by the wiper can be drawn back into the driver’s field of view by aerodynamic forces introduced by the wiper motion. This is wiper drawback, an undesirable phenomenon as the water which is drawn back on to the windscreen can reduce driver’s vision and makes the wiper less effective. The phenomena of wiper drawback can be tested for in climatic tunnels using sprayer systems to wet the windscreen. However, these tests require a bespoke test property or prototype vehicle, which means that the tests are done fairly late in the development of the vehicle.
Technical Paper

Automobile Demand and the Policy Forecast

1983-02-01
830494
Mathematical models of the automotive system play a valuable role in forecasting and policy analysis, especially in the public sector. However, poor documentation, lack of adequate model evaluation and unfamiliarity with the data and structural limitations of models suggest the possibility of misuse in such policy applications as fuel economy standards and regulatory impact assessments. Findings are illustrated by analysis of two models: the Wharton EFA Automobile Demand Model and the Sweeney Passenger Car Gasoline Demand Model. In addition, 40 world sector models and studies representing more than 75 countries are summarized.
Technical Paper

Repairable System Reliability Prediction

2004-03-08
2004-01-0457
For a vehicle or repairable system, incidents (conditions) are neither necessarily independent nor identically distributed. Therefore, traditional statistical distributions like Weibull, Normal, etc, are no longer valid to estimate reliability. The Non-homogeneous Poisson process (NHPP) model can be used to predict reliability and warranty of the field product. It can also measure the reliability improvement during the development cycle. The NHPP model is discussed in this paper. In applying a NHHP model to reliability data on a repairable system, one may have few or no failures. This paper presents the I/100 and reliability derivations when the parameter β in the ROCOF function is assumed to have a known value.
Technical Paper

Press-Line Simulation in Stamping Process

2004-03-08
2004-01-1047
The automotive industry is rapidly implementing computer simulation in every aspect of their processes mainly to decrease the time required to bring new models to market. Computer simulation can also be used to reduce the cost of vehicle development and manufacturing. A major portion of the manufacturing cost associated with automotive stamping lies in the process design, build and tryout of production dies and in automation of the transfer equipment. Press home-line tryout is largely a trial-and-error process relying heavily on the skills and experience of tool and die makers. To reduce this dependence on human skills and effort, press-line simulation can be effectively utilized to verify the design accuracy thereby reducing the changes needed to rework the production die/tool. The entire press-line with all its complete accessories can be modeled and checked for design errors similar to the try-out conducted in the production plant.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Vehicle Speed Prediction for Driver Assistance Systems

2004-03-08
2004-01-0170
A predictive automatic gear shift system is currently under development. The system optimizes the gear shift process, taking the conditions of the road ahead into account, such that the fuel consumption is minimized. An essential part of the system is a module that predicts the vehicle speed dynamics: This calculates a speed trajectory, i.e. the most probable vehicle speed the driver will desire for the upcoming section of the route. In the paper the theoretical background for predicting the vehicle speed, and simulation results of the predictive shift algorithm are presented.
Technical Paper

Side Window Buffeting Characteristics of an SUV

2004-03-08
2004-01-0230
Buffeting is a wind noise of high intensity and low frequency in a moving vehicle when a window or sunroof is open and this noise makes people in the passenger compartment very uncomfortable. In this paper, side window buffeting was simulated for a typical SUV using the commercial CFD software Fluent 6.0. Buffeting frequency and intensity were predicted in the simulations and compared with the corresponding experimental wind tunnel measurement. Furthermore, the effects of several parameters on buffeting frequency and intensity were also studied. These parameters include vehicle speed, yaw angle, sensor location and volume of the passenger compartment. Various configurations of side window opening were considered. The effects of mesh size and air compressibility on buffeting were also evaluated. The simulation results for some baseline configurations match the corresponding experimental data fairly well.
Technical Paper

Body/Chassis Dynamic Response Under Experimental Modal Test

2005-05-16
2005-01-2463
Mode management is an essential part of the design process for NVH performance. System resonances must be sufficiently separated to minimize interaction from source inputs and each other [1]. Such resonances are typically determined through experimental modal testing conducted in a lab environment under controlled and repeatable conditions. Global vehicle and suspension system response demonstrate soft nonlinear behavior, however. Their resonant frequencies may thus decrease under on-road input not reproducible in a lab environment. Subsequently, mode management charts derived from lab testing may not be representative of the vehicle's on-road dynamic response. This paper presents modal model determination methodologies, and examines suspension system and vehicle global dynamic response under lab modal test and operating conditions. Vehicle suspension modes measured under static and dynamic (rolling) conditions will be compared.
X