Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Toyota's Integrated Drive Power Control System for Downsized Turbocharged Engine

2015-04-14
2015-01-1636
New engine controls have been developed for the turbocharged Lexus NX200t to improve driving power by reducing engine torque output lag. Drive power management functions have been centralized in an integrated drive power control system. The newly developed controls minimize the potential reduction in drivability associated with the adoption of a turbocharged engine while improving fuel efficiency. General driveability issues commonly associated with a turbocharged engine include sudden increases in drive power due to the response lag of the turbocharger, and higher shifting frequencies if this response lag triggers a disturbed accelerator operation pattern by the driver. The developed technologies detect and control sudden increases in drive power to create the optimum drive power map, and reduce unnecessary shifts even if the driver's accelerator operation is disturbed.
Journal Article

Improvement in Vehicle Motion Performance by Suppression of Aerodynamic Load Fluctuations

2015-04-14
2015-01-1537
This study focuses on fluctuations in the aerodynamic load acting on a hatchback car model under steady-state conditions, which can lead to degeneration of vehicle motion performance due to excitation of vehicle vibrations. Large eddy simulations were first conducted on a vehicle model based on a production hatchback car with and without additional aerodynamic devices that had received good subjective assessments by drivers. The numerical results showed that the magnitudes of the lateral load fluctuations were larger without the devices at Strouhal numbers less than approximately 0.1, where surface pressure fluctuations indicated a negative correlation between the two sides of the rear end, which could give rise to yawing and rolling vibrations. Based on the numerical results, wind-tunnel tests were performed with a 28%-scale hatchback car model.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Journal Article

An Application of a Model-Prediction-Based Reference Modification Algorithm to Engine Air Path Control

2017-03-28
2017-01-0586
In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits. Hence, it is quite beneficial to cultivate RG methodologies to deal with multiple references and constraints.
Journal Article

Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry

2016-04-05
2016-01-1611
This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
Journal Article

Development of CFD Inverse Analysis Technology Using the Transient Adjoint Method and Its Application to Engine In-Cylinder Flow

2016-04-05
2016-01-0607
Conventional CFD-based shape optimization technology that uses parametric shape modification and optimal solutions searching algorithms has the two problems: (1) outcome of optimized shapes depend on the selection of design parameters made by the designer, and (2) high computational costs. To resolve those problems, two innovative inverse analysis technologies based on the Adjoint Method were developed in previous study: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape for maximizing the cost function in the constrained design space. However, these technologies are only applicable to steady flows. Since most flows in a vehicle (such as engine in-cylinder flow) are transient, a practical technology for surface geometry sensitivity analysis has been developed based on the Transient Adjoint Method.
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Journal Article

Pedestrian/Bicyclist Limb Motion Analysis from 110-Car TASI Video Data for Autonomous Emergency Braking Testing Surrogate Development

2016-04-05
2016-01-1456
Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
Journal Article

Clarification of Transient Characteristics by Coupled Analysis of Powertrains and Vehicles

2016-04-05
2016-01-1314
With the goal of improving drivability, this research aimed to clarify the mechanism of vehicle longitudinal acceleration, focusing on tip-in acceleration. Conventional typical analysis methods include experimental modal and model-based analysis. However, since the former requires the measurement of impulses and other input forces while the vehicle is stopped, measurement under actual driving conditions is difficult. The latter requires characteristic values such as the stiffness and damping coefficients to be identified in advance, which cannot be achieved either easily or precisely. Therefore, this paper proposes a new experiment-based analysis method. This method enables the acquisition of engine torque and transmission torque/force by measuring only the acceleration values of some components under driving conditions.
Journal Article

Synergetic DOC-DPF System Optimization Using Advanced Models

2017-01-10
2017-26-0121
Modern ‘DOC-cDPF’ systems for diesel exhaust are employing Pt-, Pd- as well as Pt/Pd alloy- based coatings to ensure high conversion efficiency of CO, HC even at low temperatures. Depending on the target application, these coatings should be also optimized towards NO2 generation which is involved in low temperature soot oxidation as well as in SCR-based deNOx. Zeolite materials are also frequently used to control cold-start HC emissions. Considering the wide variety of vehicles, engines and emission targets, there is no single optimum coating technology. The main target is therefore to maximize synergies rather than to optimize single components. At the same time, the system designer has nowadays a wide range of technologies to choose from, including PGM alloyed combinations (Pt/Pd), multiple layers and zones applicable to both DOCs and DPFs.
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Journal Article

Development of New IGBT to Reduce Electrical Power Losses and Size of Power Control Unit for Hybrid Vehicles

2017-03-28
2017-01-1244
One way to improve the fuel efficiency of HVs is to reduce the losses and size of the Power Control Unit (PCU). To achieve this, it is important to reduce the losses of power devices (such as IGBTs and FWDs) used in the PCU since their losses account for about 20% of the total loss of an HV. Furthermore, another issue when reducing the size of power devices is ensuring the thermal feasibility of the downsized devices. To achieve the objectives of the 4th generation PCU, the following development targets were set for the IGBTs: reduce power losses by 19.8% and size by 30% compared to the 3rd generation. Power losses were reduced by the development of a new Super Body Layer (SBL) structure, which improved the trade-off relationship between switching and steady-state loss. This trade-off relationship was improved by optimizing the key SBL concentration parameter.
Technical Paper

Development of RC-IGBT with a New Structure That Contributes to Both Reduced Size of Power Control Unit and Low Loss in Hybrid Electric Vehicles

2020-04-14
2020-01-0596
In order to improve the fuel efficiency of Hybrid Electric Vehicles (HEVs), it is necessary to reduce the size and power loss of the HEV Power Control Units (PCUs). The loss of power devices (IGBTs and FWDs) used in a PCU accounts for approximately 20% of electric power loss of an HEV. Therefore, it is important to reduce the power loss while size reduction of the power devices. In order to achieve the newly developed PCU target for compact-size vehicles, the development targets for the power device were to achieve low power loss equivalent to its previous generation while size reduction by 25%. The size reduction was achieved by developing a new RC-IGBT (Reverse Conducting IGBT) with an IGBT and a FWD integration. As for the power loss aggravation, which was a major issue due to this integration, we optimized some important parameters like the IGBT and FWD surface layout and backside FWD pattern.
Technical Paper

A Study of Mechanism of Engine Idling Rattle Noise in Hybrid Transaxles

2020-04-14
2020-01-0421
Quietness is one of the most important characteristics for Hybrid Electric Vehicle quality. Reduction of the rattle noise caused by the torque fluctuation of an internal combustion engine can contribute to get a customer satisfaction. Toyota Hybrid System(THS) also has same requirement. Especially, the rattle noise during idling may happen discontinuously despite of periodical engine combustion excitation. It is necessary to study the mechanism and reduce the rattle noise. At lower engine torque range, decreasing the torsional damper’s stiffness can improve this condition as the manual transaxle done. However, the rattle noise can occur easily in conditions of relatively large torque spike inputs to the torsional system, such as the engine start/stop function of THS using the motor/generator in the transaxle.
Technical Paper

Development of Power Control Unit for Compact-Class Vehicle

2020-04-14
2020-01-0456
Toyota Motor has developed a new compact class hybrid vehicle (HV). This vehicle incorporates a new hybrid system to improve fuel efficiency. For this system, a new power control unit (PCU) has been developed that is downsizing, lightweight, and high efficiency. It is also important to have a highly adaptable function that can be applied to various car models. This paper describes the development of PCUs that play an important role in new systems.
Technical Paper

Analysis of Unburned Hydrocarbon Generated from Wall under Lean Combustion

2020-04-14
2020-01-0295
Combustion of a lean air-fuel mixture diluted with a large amount of air or Exhaust Gas Recirculation (EGR) gas is one of the important technologies that can reduce thermal NOx and improve gasoline engine fuel economy by reducing cooling loss. On the other hand, lean combustion increases unburned Hydro Carbon (HC) and unburned loss compared to stoichiometric combustion. This is because lean combustion reduces the burning rate of the air-fuel mixture and forms a thick quenching layer near the wall surface. In this study, the relationship between the thickness of the unburned HC and the excess air ratio is analyzed using Laser Induced Fluorescence (LIF) method and Computational Fluid Dynamic (CFD) of combustion. The HC distribution near the engine liner when the excess air ratio is increased is investigated by LIF. As a result, it is found that the quenching distance of the flame in the cylinder is larger for lean conditions than the general single-wall quenching relationship.
Journal Article

Narrow-Band Omnidirectional Structural Color

2008-04-14
2008-01-1049
Automotive pigments consist of absorptive materials which absorb most of the wavelengths of light in the visible range (400-800 nm) except one particular range which gets reflected and seen as color. This coloring mechanism based on light absorption due to their molecular structure generally reflects a broader range of wavelength with a moderate reflectivity (50-60%). However in nature we find many magnificent colors in insects, butterflies, birds and fishes. These colors in nature are not based on the abortive pigments, but on the nanoscopic regular structures that interfere light reflected from those periodic sites. Since animals contain no solid metals, to produce metallic-like reflections they also rely on interference of light.[1] Most common and well-known form of animal reflector is the multilayer type where alternating high and low refractive index layers are formed. Such nanostructure assembly can reflect light up to 100%.
Journal Article

Measurement of Oil Film Pressure in the Main Bearings of an Operating Engine Using Thin-Film Sensors

2008-04-14
2008-01-0438
We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Journal Article

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

2011-04-12
2011-01-1244
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing.
X