Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

A DFSS Approach Study on the Effects of Vehicle Cabin Properties on HVAC System’s Cool Down Performance Using 1D Simulation

2020-04-14
2020-01-1258
Due to the increase in heat wave across the globe, maintaining the thermal comfort of passengers in a vehicle is becoming a challenge. Considering global warming, there is a need to shift towards greener refrigerants which in itself causes a marginal degradation in the Heating Ventilation and Air Conditioning (HVAC) system performance. Also the emission norms and regulations demanding for a smaller engine if not for a hybrid or electric vehicle, there is a need for optimally designing the HVAC system since it is directly related with the efficiency of the vehicle and also plays a vital role in the customer comfort. Hence maintaining the comfort level of the passengers needs further exploration and challenging rather than optimizing the HVAC system alone in the competitive market. Conventionally for given system where we need sufficient cooling, the capacity of the components can be increased in order to meet the customer comfort.
Technical Paper

Automotive Wheel Metamodeling Using Response Surface Methodology (RSM) Technique

2020-04-14
2020-01-1234
Computational cost plays a major role in the performance of scientific and engineering simulation. This in turn makes the virtual validation process complex and time consuming. In the simulation process, achievement of appropriate level of accurate models as close as physical testing is the root for increase in the computational cost. During preliminary phase of product development, it is difficult to identify the appropriate size, shape and other parameters of the component and they will undergo several modifications in concept and other stages. An approximation model called metamodel or surrogate model has developed for reducing these effects and minimizing the computational cost. Metamodel can be used in the place of actual simulation models. Metamodel can be an algorithm or a mathematical relation representing the relations between input and output parameters.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

Static Loading Analysis of Third Row Floor Duct System Using Finite Element Method

2017-03-28
2017-01-0168
In current scenario, there is an increasing need to have faster product development and achieve the optimum design quickly. In an automobile air conditioning system, the main function of HVAC third row floor duct is to get the sufficient airflow from the rear heating ventilating and air-conditioning (HVAC) system and to provide the sufficient airflow within the leg locations of passenger. Apart from airflow and temperature, fatigue strength of the duct is one of the important factors that need to be considered while designing and optimizing the duct. The challenging task is to package the duct below the carpet within the constrained space and the duct should withstand the load applied by the passenger leg and the luggage. Finite element analysis (FEA) has been used extensively to validate the stress and deformation of the duct under different loading conditions applied over the duct system.
Technical Paper

A DFSS Approach to Optimize the Second Row Floor Duct Using Parametric Modelling

2017-03-28
2017-01-0176
The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Computational fluid dynamics analysis (CFD) has been used extensively to optimize system performance and shorten the product development time. In this methodology, a parametric modeling of floor duct design using the factors such as crossectional area, duct length, insulation type, insulation thickness and thickness of duct were created using CATIA. L12 orthogonal design array matrix has been created and the 3D CFD analysis has been carried out individually to check the velocity and temperature.
Technical Paper

A Sensitivity Study on Inertance Frequency Response Function through Non-Parametric Variability Approach

2017-03-28
2017-01-0445
In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one which primarily consists of acceleration sensors, control module and air-bag deployment system. Control module’s decision is based on accelerometer sensor signals so that its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
Technical Paper

Optimization of Center Console Duct Using Robust Assessment Methodology

2018-04-03
2018-01-0072
The thermal comfort for the passenger inside the cabin is maintained by the HVAC system. To ensure a comfort for the 2nd row passengers in the cabin, it is very essential to design an efficient HVAC and rear console duct system which can deliver sufficient airflow with less pressure drop. The primary focus of the study is to assess existing airflow of the center console duct using CFD and propose improvement in its duct shape to meet the passenger comfort sitting in the rear seat. In this study, the vehicle cabin model, HVAC system and duct design was modeled using the design software UG. To analyze and estimate the behavior of the air flow of the system, a steady state simulation was performed using STAR CCM CFD software. The performance of the console duct system is judged by parameters like distribution of airflow, velocity at console duct outlet, pressure drop through the duct and the uniformity of the air flow at the passenger locations.
Technical Paper

EXV to Optimize PHEV/BEV Automotive Air Conditioning System Performance and Simulation Methodology

2020-04-14
2020-01-1393
Due to increasing standards in fuel consumption, battery electric vehicles (BEV) and plug in electric hybrid vehicles (PHEV), are becoming more commonplace in the automotive industry. Batteries used in such applications require methods of thermal management to promote longer life, higher efficiency and performance. A common method of keeping the battery cool, in high heat conditions, is to use a water to refrigerant chiller. The already existing automotive air conditioning system is leveraged to enable the use of such a chiller. The added thermal transient load of the battery adds complexity to the refrigeration system. Balancing the thermal comfort of the occupants with temperature requirements of battery drives challenges to the overall system capacity. The sudden change in battery cooling loads can noticeably degrade the evaporator heat rejection. In extreme cases the battery cooling load can cause complete loss of refrigerant flow to the evaporator.
Technical Paper

Automotive HVAC Dual Unit System Cool-Down Optimization Using a DFSS Approach

2019-04-02
2019-01-0892
Automotive AC systems are typically either single unit or dual unit systems, while the dual unit systems have an additional rear evaporator. The refrigerant evaporates inside these heat exchangers by taking heat and condensing the moisture from the recirculated or fresh air that is being pushed into the car cabin by air blowers. This incoming cold air in turn brings the cabin temperature and humidity to a level that is comfortable for the passengers. These HVAC units have their own thermal expansion valve to set the refrigerant flow, but both are connected to the main AC refrigerant loop. The airflows, however, are controlled independently for front and rear unit that can affect the temperature and amount of air coming into the cabin from each location and consequently the overall cabin cool-down performance.
Technical Paper

An Investigation of Body Inertance Response for Occupant Safety Control Module Attachment Regions

2016-04-05
2016-01-0473
Current generation passenger vehicles are built with several electronic sensors and modules which are required for the functioning of passive safety systems. These sensors and modules are mounted on the vehicle body at locations chosen to meet safety functionality requirements. They are mounted on pillars or even directly on panels based on specific packaging requirements. The body panel or pillar poses local structural resonances and its dynamic behavior can directly affect the functioning of these sensors and modules. Hence a specific inertance performance level at the mounting locations is required for the proper functioning of those sensors and modules. Drive point modal frequency response function (FRF) analysis, at full vehicle model for the frequency range up to 1000 Hz, is performed using finite element method (FEM) and verified against the target level along with test correlation.
Technical Paper

A Novel Approach to Predict HVAC Noise Using 1D Simulation

2016-04-05
2016-01-0249
In recent years reducing the automobile HVAC (Heating Ventilation and automobile conditioning) noise inside the vehicle cabin is one of the main criterions for all OEMs to provide comfort level to the passengers. The primary function of the HVAC is to deliver more air to the cabin with less noise generation for various blower speeds. Designing the optimum HVAC with less noise is one of the major challenges for all automotive manufacturers and HVAC suppliers. During the design stage, physical parts are not available and hence the simulation technique helps to evaluate the noise level of HVAC. In this study, a computational 1D (one dimensional) analysis is carried out to compute the airflow noise originated from the HVAC unit and propagated to the passenger cabin. Modeling has been done using unigraphics and the analysis is carried out using the commercial 1D software GT suite.
Technical Paper

Optimization of MAC Side Window Demister Outlet by Parametric Modelling through DFSS Approach

2015-04-14
2015-01-0363
In recent years clearing the mist on side windows is one of the main criterions for all OEMs for providing comfort level to the person while driving. Visibility through the side windows will be poor when the mist is not cleared to the desired level. “Windows fog up excessively/don't clear quickly” is one of the JD Power question to assess the customer satisfaction related to HVAC performance. In a Mobile Air Conditioning System, HVAC demister duct and outlet plays an important role for removing the mist formation on vehicle side window. Normally demister duct and outlet design is evaluated by the target airflow and velocity achieved at driver and passenger side window. The methodology for optimizing the demister outlet located at side door trim has been discussed. Detailed studies are carried out for creating a parametric modeling and optimization of demister outlet design for meeting the target velocity.
X