Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

CAE Modeling Static and Fatigue Performance of Short Glass Fiber Reinforced Polypropylene Coupons and Components

2020-04-14
2020-01-1309
One approach of reducing weight of vehicles is using composite materials, and short glass fiber reinforced polypropylene is one of most popular composite materials. To more accurately predict durability performance of structures made of this kind of composite material, static and fatigue performance of coupons and components made of a short glass fiber reinforced polypropylene has been physically studied. CAE simulations have been conducted accordingly. This paper described details of CAE model setup, procedures, analysis results and correlations to test results for static, fiber orientation flow and fatigue of coupons and a battery tray component. The material configurations include fiber orientations (0, 20 and 90 degrees), and mean stress effect (R = -1.0, -0.5, -0.2, 0.1 and 0.4). The battery tray component samples experience block cycle loading with loading ratio of R = -0.3 and 0.3. The CAE predictions have reasonable correlations to the test results.
Technical Paper

Pedestrian Head Impact, Automated Post Simulation Results Aggregation, Visualization and Analysis Using d3VIEW

2020-04-14
2020-01-1330
Euro NCAP Pedestrian head impact protocol mandates the reduction of head injuries, measured using head injury criteria (HIC). Virtual tools driven design comprises of simulating the impact on the hood and post processing the results. Due to the high number of impact points, engineers spend a significant portion of their time in manual data management, processing, visualization and score calculation. Moreover, due to large volume of data transfer from these simulations, engineers face data bandwidth issues particularly when the data is in different geographical locations. This deters the focus of the engineer from engineering and also delays the product development process. This paper describes the development of an automated method using d3VIEW that significantly improves the efficiency and eliminates the data volume difficulties there by reducing the product development time while providing a higher level of simulation results visualization.
Journal Article

Impact of SCR Integration on N2O Emissions in Diesel Application

2015-04-14
2015-01-1034
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III/Tier III Emissions Standards for Light Duty Diesel (LDD) passenger vehicles. As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, durability and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR). The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) provided as Diesel Exhaust Fluid (DEF), which is an aqueous urea solution 32.5% concentration in weight with water (CO(NH2)2 + H2O), optimum operating temperatures, and optimum nitrogen dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is most influenced by Precious Group Metals (PGM) containing catalysts upstream of the SCR catalyst.
Journal Article

Design of a Composite Structural Panel for High Volume Production

2015-04-14
2015-01-1311
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within FCA US, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from the BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of FCA US vehicles.
Journal Article

Assessment of Similarity of a Set of Impact Response Time Histories

2015-04-14
2015-01-1441
Two methods of assessing the similarity of a set of impact test signals have been proposed and used in the literature, which are cumulative variance-based and cross correlation-based. In this study, a normalized formulation unites these two approaches by establishing a relationship between the normalized cumulative variance metric (v), an overall similarity metric, and the normalized magnitude similarity metric (m) and shape similarity metric (s): v=1 − m · s. Each of these ranges between 0 and 1 (for the practical case of signals acquired with the same polarity), and they are independent of the physical unit of measurement. Under generally satisfied conditions, the magnitude similarity m is independent of the relative time shifts among the signals in the set; while the shape similarity s is a function of these.
Journal Article

Transient Modeling of Vehicle Under-hood and Underbody Component Temperatures

2016-04-05
2016-01-0281
In this paper, transient component temperatures for the vehicle under-hood and underbody are estimated. The main focus is on the component temperatures as a result of radiation from exhaust, convection by underbody or under-hood air and heat conduction through the components. The exhaust surface temperature is simulated as function of time and for various vehicle duty cycles such as city traffic, road load and grade driving conditions. At each time step the radiation flux to the surrounding component is estimated, heat addition or removal by convection is evaluated based on air flow, air temperature and component surface area. Simulation results for under-hood and underbody components are compared against vehicle test data. The comparison shows very good agreement between simulated and measured component temperatures under both steady state and transient conditions.
Journal Article

Review and Assessment of Frequency-Based Fatigue Damage Models

2016-04-05
2016-01-0369
Several popular frequency-based fatigue damage models (Wirsching and Light, Ortiz and Chen, Larsen and Lutes, Benascuitti and Tovo, Benascuitti and Tovo with α.75, Dirlik, Zhao and Baker, and Lalanne) are reviewed and assessed. Seventy power spectrum densities with varied amplitude, shape, and irregularity factors from Dirlik’s dissertation are used to study the accuracies of these methods. Recommendations on how to set up the inverse fast Fourier transform to synthesize load data and obtain accurate rainflow cycle counts are given. Since Dirlik’s method is the most commonly used one in industry, a comprehensive investigation of parameter setups for Dirlik’s method is presented. The mean error and standard deviation of the error between the frequency-based model and the rainflow cycle counting method was computed for fatigue slope exponent m ranging from 3 to 12.
Journal Article

A Stress-Based Non-Proportionality Parameter for Considering the Resistance of Slip Systems of Shear Failure Mode Materials

2016-04-11
2016-01-9081
Multiaxial loading on mechanical products is very common in the automotive industry, and how to design and analyze these products for durability becomes an important, urgent task for the engineering community. Due to the complex nature of the fatigue damage mechanism for a product under multiaxial state of stresses/strains which are dependent upon the modes of loading, materials, and life, modeling this behavior has always been a challenging task for fatigue scientists and engineers around the world. As a result, many multiaxial fatigue theories have been developed. Among all the theories, an existing equivalent stress theory is considered for use for the automotive components that are typically designed to prevent Case B cracks in the high cycle fatigue regime.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

A Method Using FEA for the Evaluation of Tooling and Process Requirements to Meet Dimensional Objectives

2020-04-14
2020-01-0497
Dimensional Engineering concentrates effort in the early design phases to meet the dimensional build objectives in automotive production. Design optimization tools include tolerance stack up, datum optimization, datum coordination, dimensional control plans, and measurement plans. These tools are typically based on the assumption that parts are rigid and tooling dimensions are perfect. These assumptions are not necessarily true in automotive assemblies of compliant sheet metal parts on high volume assembly lines. To address this issue, Finite Element Analysis (FEA) has been increasingly used to predict the behavior of imperfect and deformable parts in non-nominal tooling. This paper demonstrates an application of this approach. The complete analysis is divided into three phases. The first phase is a nominal design gravity analysis to validate the nominal design and tooling.
Technical Paper

Quantification of Clamp Loss and Subsequent Loosening of Automotive Hub-Knuckle Joints under Time-Varying Proving Ground Loading

2020-04-14
2020-01-0181
Threaded fasteners or bolted joints are used extensively in automotive assemblies. There are standard procedures to evaluate joint performance under block cycles or road loads. The deciding load case for such joint design is slippage analysis of the joint. There are studies done to evaluate the theoretical and experimental behavior of these joints. There are different ways of understanding the interaction between the bolt and the nut under different loading scenarios. However, none have provided a satisfactory method of quantifying bolt loosening or loss of clamp load under cyclic loading, where no slippage is observed. Under varying loads, initial relaxation of the joint is followed by a loss of clamping load. Below a critical value, complete loss of clamping load progresses very rapidly and this results in a loose joint.
Technical Paper

Experimental Study on Static and Fatigue Performance of Self-Piercing Riveted Joints and Adhesively Bonded Self-Piercing Riveted Joints Connecting Steel and Aluminum Components

2020-04-14
2020-01-0177
This paper describes an experimental study on the performance of self-piercing riveted (SPR) joints and adhesively bonded SPR joints connecting steel and aluminum components under both quasi-static and cyclic loading. The joint configurations cover a wide range of material gauges, types and grades. Two and three thickness joints, with and without adhesive are also part of this study. Load versus deflection behavior, load carrying capacity, fatigue life and the failure modes for each type of joint are discussed. This study focuses on the influence of dissimilar material and adhesives to the joint performance.
Technical Paper

Review and Assessment of Multiaxial Fatigue Limit Models

2020-04-14
2020-01-0192
The purpose of this paper is to provide a comparison of multiaxial fatigue limit models and their correlation to experimental data. This paper investigates equivalent stress, critical plane and invariant-based multiaxial fatigue models. Several methods are investigated and compared based on ability to predict multiaxial fatigue limits from data published in literature. The equivalent stress based model developed by Lee, Tjhung and Jordan (LTJ), provides very accurate predictions of the fatigue limit under multiaxial loading due to its ability to account for non-proportional loading. This accuracy comes from the model constant which is calculated based on multiaxial fatigue data. This is the only model investigated that requires multiaxial fatigue testing to generate the model parameters. All other models rely on uniaxial test results.
Technical Paper

Frame Structure Durability Development Methodology for Various Design Phases

2020-04-14
2020-01-0196
It is a challenging task to find an optimal design concept for a truck frame structure given the complexity of loading conditions, vehicle configurations, packaging and other requirements. In addition, there is a great emphasis on light weight frame design to meet stringent emission standards. This paper provides a framework for fast and efficient development of a frame structure through various design phases, keeping durability in perspective while utilizing various weight reduction techniques. In this approach frame weight and stiffness are optimized to meet strength and durability performance requirements. Fast evaluation of different frame configurations during the concept phase (I) was made possible by using DFSS (Design for Six Sigma) based system synthesis techniques. This resulted in a very efficient frame ladder concept selection process.
Technical Paper

Acid Resistant POM for Fuel System Components

2020-04-14
2020-01-0231
Investigation into fuel system warranty has led to the need to develop cost effective, robust materials that are resistant to both fuel and aggressive cleaners. Acetal, chemically known as polyoxymethylene (POM), is the current material that is used universally by OEM’s throughout the fuel system for its excellent performance in fuel and relatively low cost, but lacks resistance to strong acidic solutions. Acid containing wheel cleaning solutions are increasingly being used by customers to clean their aluminum and magnesium wheels. Due to the proximity of the fuel modules to the wheel openings, acidic wheel cleaners chemically attack the POM resulting in cracks. The team worked closely with suppliers in recent years to develop cost effective, acid resistant POM materials that can withstand the stress-cracking at severe acid concentrations and meet the functional requirements.
Technical Paper

Robust Assessment of Automotive Door Structure by Considering Manufacturing Variations

2020-04-14
2020-01-0910
The automotive door structure experience various static and dynamic loading conditions while going through an opening and closing operation. A typical swing door is attached to the body with two hinges and a check strap. These mechanisms carry the loads while the door is opened. Similarly, while closing the door, the latch/striker mechanism along with the seal around the periphery of the door react all loads. Typically, computer aided engineering (CAE) simulations are performed considering a nominal manufacturing (or build) tolerance condition, that results in one loading scenario. But while assembling the door with the body, the build variations in door mechanisms mentioned above can result in different loading scenarios and it should be accounted for design evaluation. This paper discusses various build tolerances and its effect on door durability performances to achieve a robust door design.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

Application of Laminated Steels for Stamped Bumpers

2020-04-14
2020-01-1055
Light-weight solutions for stamped steel components that exhibit the same or similar appearance properties for purposes of authentic feel and perception to customers will play a critical role as the progress towards reaching maximum fuel efficiency for large vehicles continues. This paper outlines the potential uses for laminated steel in large stamped steel bumper applications that would normally be stamped with thick sheet metal in order to meet vehicle level functional objectives. The paper presents the investigation of the one-for-one drop-in capabilities of the laminate steel material to existing stamping dies, special processing considerations while manufacturing, vehicle level performance comparisons, and class “A” coating options and process needs. Most of all, it will highlight the significant vehicle weight saving benefits and opportunities as compared to current production stamped steel bumpers.
Technical Paper

Automotive Dimensional Quality Control with Geometry Tree Process

2020-04-14
2020-01-0480
Geometry Tree is a term describing the product assembly structure and the manufacturing process for the product. The concept refers to the assembly structure of the final vehicle (the Part Tree) and the assembly process and tools for the final product (the Process Tree). In the past few years, the Geometry Tree-based quality process was piloted in the FCA US LLC assembly plants and has since evolved into a standardized quality control process. In the Part Tree process, the coordinated measurements and naming convention are enforced throughout the different levels of detailed products to sub-assemblies and measurement processes. The Process Tree, on the other hand, includes both prominently identified assembly tools and the mapping of key product characteristics to key assembly tools. The benefits of directly tying critical customer characteristics to actual machine components that have a high propensity to influence them is both preventive and reactive.
X