Refine Your Search

Topic

Author

Search Results

Journal Article

Assessment of Similarity of a Set of Impact Response Time Histories

2015-04-14
2015-01-1441
Two methods of assessing the similarity of a set of impact test signals have been proposed and used in the literature, which are cumulative variance-based and cross correlation-based. In this study, a normalized formulation unites these two approaches by establishing a relationship between the normalized cumulative variance metric (v), an overall similarity metric, and the normalized magnitude similarity metric (m) and shape similarity metric (s): v=1 − m · s. Each of these ranges between 0 and 1 (for the practical case of signals acquired with the same polarity), and they are independent of the physical unit of measurement. Under generally satisfied conditions, the magnitude similarity m is independent of the relative time shifts among the signals in the set; while the shape similarity s is a function of these.
Technical Paper

Integrated Engine Performance and Valvetrain Dynamics Simulation

2016-04-05
2016-01-0483
Valvetrain dynamics modeling and engine combustion modeling are often carried out independently. As a result, the interaction between these two physical responses may not be accurately assessed. The objective of this work is to understand the impact that robust valve timing simulations, implemented using a fully coupled valve train dynamics and engine performance model, have on engine performance prediction. The integrated simulation and detailed technical approach are discussed through the presentation of an example implementation. An I4 engine model is developed in which engine performance and valvetrain dynamics modeling are coupled. A benefit of this multi-physics approach is that it reduces reliance on empirically derived estimates of valve lash in favor of physical modeling of engine valvetrain dynamics that predicts lash during engine performance modeling.
Technical Paper

Methodology to Determine the Effective Volume of Gasoline Particulate Filter Technology on Criteria Emissions

2016-04-05
2016-01-0936
New Particulate Matter (PM) and Particulate Number (PN) regulations throughout the world have created a need for aftertreatment solutions that include particulate control as an option to comply with the legislation. However, limitations in other criteria emissions cannot be sacrificed to accomplish the reduction of PM/PN. For this work, three-way washcoat catalyzed wall-flow Gasoline Particulate Filters (GPF) and similarly catalyzed flow-through catalysts of common defined volume were tested. Their catalytic performance was determined by measuring NOx, CO and HC conversion efficiencies and CO2 levels over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) cycles. Analysis of the impact on CO2 emissions was also evaluated in relation to backpressure from 1-D modeling analysis. All exhaust systems used the same loading and ratio of Platinum Group Metals (PGM), but employed different cell structures in their substrates.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
Technical Paper

Optimization of Structural Adhesives in BIW to Improve Full Vehicle Crash Performance

2017-03-28
2017-01-0255
The crashworthiness of body-in-white (BIW) plays a vital role in full vehicle crash performance. The structural integrity of BIW is controlled via strength of the spot welds and adhesives that are the primary entities to join sheet metal. The number of welds and amount of adhesives in the entire BIW directly affects the cost and the cycle time of the BIW; which makes them a good candidate for optimization. However optimization of the welds and/or adhesives not only reduces the number of connections but also provides the opportunity to improve the structural performance and mass saving by placing them optimally for the structural responses. This paper discusses the optimization of full vehicle structural performance for the small overlap crash event using the length of adhesives in the BIW as parameters. Included in the study were length of the adhesives and gage variables, defined in the front-end structure of the vehicle.
Technical Paper

Integrating a Proactive Quality Control Concept into Machining Operation of a Crankshaft Manufacturing Process

2019-04-02
2019-01-0507
Competition in the manufacturing industry is ever increasingly intense. Manufacturing organizations that want to grow and prosper must embrace a discipline of constant improvement. Their engineering departments are tasked with improving existing manufacturing processes in terms of quality and throughput, which is vital to competing on a global scale. Manufacturers strive to utilize technologies to extract efficiencies from their existing processes. Reducing scrap and rework is the paramount goal in increasing a processes’ efficiency. The foundation of this study is to analyze a production line to determine the quality status throughout the manufacturing process. The intention is to react to process instability before the production becomes non-compliant (scrap/rework) which will significantly improve productivity.
Technical Paper

Notch Plasticity and Fatigue Modelling of AZ31B-H24 Magnesium Alloy Sheet

2019-04-02
2019-01-0530
Vehicle weight reduction through the use of components made of magnesium alloys is an effective way to reduce carbon dioxide emission and improve fuel economy. In the design of these components, which are mostly under cyclic loading, notches are inevitably present. In this study, surface strain distribution and crack initiation sites in the notch region of AZ31B-H24 magnesium alloy notched specimens under uniaxial load are measured via digital image correlation. Predicted strains from finite element analysis using Abaqus and LS-DYNA material types 124 and 233 are then compared against the experimental measurements during quasi-static and cyclic loading. It is concluded that MAT_233, when calibrated using cyclic tensile and compressive stress-strain curves, is capable of predicting strain at the notch root. Finally, employing Smith-Watson-Topper model together with MAT_233 results, fatigue lives of the notched specimens are estimated and compared with experimental results.
Technical Paper

Evaluation of Low Mileage GPF Filtration and Regeneration as Influenced by Soot Morphology, Reactivity, and GPF Loading

2019-04-02
2019-01-0975
As European and Chinese tailpipe emission regulations for gasoline light-duty vehicles impose particulate number limits, automotive manufacturers have begun equipping some vehicles with a gasoline particulate filter (GPF). Increased understanding of how soot morphology, reactivity, and GPF loading affect GPF filtration and regeneration characteristics is necessary for advancing GPF performance. This study investigates the impacts of morphology, reactivity, and filter soot loading on GPF filtration and regeneration. Soot morphology and reactivity are varied through changes in fuel injection parameters, known to affect soot formation conditions. Changes in morphology and reactivity are confirmed through analysis using a transmission electron microscope (TEM) and a thermogravimetric analyzer (TGA) respectively.
Technical Paper

Lumped Parameter Based Thermo-Physical Modeling of Electrified Vehicle Transmission System

2018-04-03
2018-01-1195
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry toward more efficient vehicle thermal management systems to best utilize the heat produced from burning fuel and improve driveline efficiency. The greatest part of the effort is directed toward the hybridization of automotive transmission systems. The efficiency and durability of hybrid powertrain depends on the heat generation in electric motors and their interactions among each other, ambient condition, the cooling system and the transmission component configuration. These increase the complexity of motor temperature prediction as well as the computational cost of running a conjugate heat-transfer based CFD analysis. In this paper, 1D physics based thermal model is developed which allows rapid and accurate component-wise temperature estimation of the electric motor during both steady-state and transient driving cycles.
Technical Paper

CAE Based Development of an Ejection Mitigation (FMVSS 226) SABIC using Design for Six Sigma (DFSS) Approach

2015-04-14
2015-01-1473
NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
Technical Paper

Development of a Nonlinear, Hysteretic and Frequency Dependent Bushing Model

2015-04-14
2015-01-0428
An accurate bushing model is vital for vehicle dynamic simulation regarding fatigue life prediction. This paper introduces the Advanced Bushing Model (ABM) that was developed in MATLAB® environment, which gives high precision and fast simulation. The ABM is a time-domain model targeting for vehicle durability simulation. It dynamically captures bushing nonlinearities that occur on stiffness, damping and hysteresis, through a time-history-based fitting technique, compensated with frequency dependency functionality. Among the simulated and test-collected bushing loads, good correlations have been achieved for elastomer bushings and hydraulic engine mounts and validated with a random excitation signal. This ABM model has been integrated into a virtual shaker table (from a parallel project) as the engine mount model to simulate the mount load, and has shown acceptable prediction on fatigue damage.
Technical Paper

A Comprehensive Approach for Estimation of Automotive Component Life due to Thermal Effects

2018-05-30
2018-37-0019
Due to stringent environmental requirements, the vehicle under-hood and underbody temperatures have been steadily increasing. The increased temperatures affect components life and therefore, more thermal protection measures may be necessary. In this paper, we present an algorithm for estimation of automotive component life due to thermal effects through the vehicle life. Traditional approaches consider only the maximum temperature that a component will experience during severe driving maneuvers. However, that approach does not consider the time duration or frequency of exposure to temperature. We have envisioned a more realistic and science based approach to estimate component life based on vehicle duty cycles, component temperature profile, frequency and characteristics of material thermal degradation. In the proposed algorithm, a transient thermal analysis model provides the exhaust gas and exhaust surface temperatures for all exhaust system segments, and for any driving scenario.
Technical Paper

Thermal Map of an Exhaust Manifold for a Transient Dyno Test Schedule: Development and Test Data Correlation

2018-04-03
2018-01-0126
In an Internal Combustion (IC) Engine, the exhaust manifold has the primary function of channeling products of combustion from cylinder head runners to the emissions system through a collector. Exhaust manifolds must endure severe thermal loads and high strain caused by channeling extremely hot gases and fastener loads, respectively. The combination of these two loads can lead to Thermomechanical Fatigue (TMF) failures after repeated operational cycles if they are not assessed and addressed adequately during the design process. Therefore, it is vital to have a methodology in place to evaluate the life of an engine component (such as the exhaust manifold) using a TMF damage prediction model. To accomplish this, spatial temperature prediction and maximum value attained, as well as temporal distribution, are the most important input conditions.
Journal Article

Sizing of Coolant Passages in an IC Engine Using a Design of Experiments Approach

2015-04-14
2015-01-1734
Determining coolant flow distribution in a topologically complex flow path for efficient heat rejection from the critical regions of the engine is a challenge. However, with the established computational methodology, thermal response of an engine (via conjugate heat transfer) can be accurately predicted [1, 2] and improved upon via Design of Experiment (DOE) study in a relatively short timeframe. This paper describes a method to effectively distribute the coolant flow in the engine coolant cavities and evenly remove the heat from various components using a novel technique of optimization based on an approximation model. The current methodology involves the usage of a sampling technique to screen the design space and generate the simulation matrix. Isight, a process automation and design exploration software, is used to set the framework of this study with the engine thermal simulation setup done in the CFD solver, STAR-CCM+.
Journal Article

Model-Based Control-Oriented Combustion Phasing Feedback for Fast CA50 Estimation

2015-04-14
2015-01-0868
The highly transient operational nature of passenger car engines makes cylinder pressure based feedback control of combustion phasing difficult. The problem is further complicated by cycle-to-cycle combustion variation. A method for fast and accurate differentiation of normal combustion variations and true changes in combustion phasing is addressed in this research. The proposed method combines the results of a feed forward combustion phasing prediction model and “noisy” measurements from cylinder pressure using an iterative estimation technique. A modified version of an Extended Kalman Filter (EKF) is applied to calculate optimal estimation gain according to the stochastic properties of the combustion phasing measurement at the corresponding engine operating condition. Methods to improve steady state CA50 estimation performance and adaptation to errors are further discussed in this research.
Journal Article

Input Adaptation for Control Oriented Physics-Based SI Engine Combustion Models Based on Cylinder Pressure Feedback

2015-04-14
2015-01-0877
As engines are equipped with an increased number of control actuators to meet fuel economy targets, they become more difficult to control and calibrate. The additional complexity created by a larger number of control actuators motivates the use of physics-based control strategies to reduce calibration time and complexity. Combustion phasing, as one of the most important engine combustion metrics, has a significant influence on engine efficiency, emissions, vibration and durability. To realize physics-based engine combustion phasing control, an accurate prediction model is required. This research introduces physics-based control-oriented laminar flame speed and turbulence intensity models that can be used in a quasi-dimensional turbulent entrainment combustion model. The influence of laminar flame speed and turbulence intensity on predicted mass fraction burned (MFB) profile during combustion is analyzed.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Journal Article

Impact of SCR Integration on N2O Emissions in Diesel Application

2015-04-14
2015-01-1034
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III/Tier III Emissions Standards for Light Duty Diesel (LDD) passenger vehicles. As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, durability and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR). The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) provided as Diesel Exhaust Fluid (DEF), which is an aqueous urea solution 32.5% concentration in weight with water (CO(NH2)2 + H2O), optimum operating temperatures, and optimum nitrogen dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is most influenced by Precious Group Metals (PGM) containing catalysts upstream of the SCR catalyst.
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

2016-04-05
2016-01-0819
As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
X