Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Complex Air Path Management Systems and Necessary Controller Structures for Future High Dynamic Requirements

2009-05-13
2009-01-1616
The future worldwide emission regulations will request a drastic decrease of Diesel engine tailpipe emissions. Depending on the planned application and the real official regulations, a further strong decrease of engine out emissions is necessary, even though the utilized exhaust after-treatment systems are very powerful. To reduce NOx emissions internally, the external exhaust gas recirculation (EGR) is known as the most effective way. Due to the continuously increasing requirements regarding specific power, dynamic behavior and low emissions, future air path systems have to fulfill higher requirements and, consequently, become more and more complex, e.g. arrangements with a 2-stage turbo charging or 2-stage EGR system with different stages of cooling performance.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Cooled EGR - A Must or an Option for 2002/04

2002-03-04
2002-01-0962
The introduction of the new emission standards in 2002/04 for heavy-duty diesel engines requires a substantial reduction of the NOx emissions while the particulate emissions remain on a constant level. The application of cooled EGR appears to be the most common approach in order to achieve the required target, although other means such as advanced combustion systems and the application of emission control devices to reduce NOx emissions have to be taken into account as well. The purpose of this study is to investigate the potential of such alternative solutions in comparison with cooled EGR to meet the upcoming emission standards.
Technical Paper

A New Approach to Boost Pressure and EGR Rate Control Development for HD Truck Engines with VGT

2002-03-04
2002-01-0964
Future HD Diesel engine technology is facing a combination of both extremely low exhaust emission standards (US 2002/2004, EURO IV and later US 2007, EURO V) and new engine test procedures such as the European Transient Cycle (ETC) in Europe and the Not-to-Exceed Area (NTE) in the US). Customers furthermore require increased engine performance, improved efficiency, and long-term durability. In order to achieve all targets simultaneously, future HD Diesel engines must have improved fuel injection and combustion systems and utilize suitable technologies such as exhaust gas recirculation (EGR), variable geometry turbine turbocharger systems (VGT) and exhaust gas after-treatment systems. Future systems require precision controlled EGR in combination with a VGT-turbocharger during transient operation. This will require new strategies and calibration for the Electronic Engine Control Unit (ECU).
Technical Paper

Type Analysis of EGR-Strategies for Controlled Auto Ignition (CAI) by Using Numerical Simulations and Optical Measurements

2006-04-03
2006-01-0630
The main assignment of Controlled Auto Ignition (CAI) operation range expansion is to reduce the burn rate or combustion noise at high load and to minimize misfire at low load. The potential of two principal EGR strategies is well known to initiate CAI in a wide range of operation map by using a variable train system: the Exhaust Port Recirculation (EPR) for higher part load and the Combustion Chamber Recirculation (CCR - also called Negative Valve Overlap) for lower part load. However the detailed comparison of the ignition phenomena with each EGR strategy has not been fully studied yet. In this paper, EPR and CCR were compared with same operational condition (engine speed and load). For the analysis, flame luminescence and Raman scattering method for optical measurement and STAR-CD (CD-adapco) for numerical simulation are used.
Technical Paper

An Urea Lean NOx Catalyst System for Light Duty Diesel Vehicles

1995-10-01
952493
Future European air quality standards for light duty diesel vehicles will include stringent NOx emission regulations. In order to meet these regulations, a lean NOx catalyst system may be necessary. Since the catalytic removal of NOx is very difficult with the large concentration of oxygen present in diesel exhaust, a reductant is usually added to the exhaust to increase the NOx conversion. This paper describes a lean NOx catalyst system for a Transit light-duty truck which uses a reductant solution of urea in water. In this work, a microprocessor was used to vary the amount of the reductant injected depending on the operating conditions of a 2,5 L naturally aspirated HSDI engine. The NOx conversions were 60% and 80% on the current European driving cycle and the U.S. FTP cycles, respectively. Data on the emissions of HC, CO, NOx, particulate mass and composition, individual HC species, aldehydes, PAH and most HC species were evaluated.
Technical Paper

Comparison of De-NOx and Adsorber Catalysts to Reduce NOx - Emissions of Lean Burn Gasoline Engines

1996-10-01
962046
A comparison of two different types of NOx reducing catalysts will be worked out. The potential of two De-NOx catalysts using engine out hydrocarbon emissions for NOx conversion will be shown by variation of different engine parameters. An analysis of the hydrocarbon species upstream and downstream catalyst will demonstrate, which components are responsible for the NOx reduction in the exhaust gas of a lean burn engine. By variation of different parameters during adsorbtion and regeneration phases of the adsorber catalyst the efficiency in NOx reduction will be optimized. An assessment of the suitability for lean burn engines will consider the emission reduction efficiency as well as the influence on engine fuel consumption.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Vehicle Study on the Impact of Diesel Fuel Sulfur Content on the Performance of DeNOX Catalysts and the Influence of DeNOX Catalysts on Particle Size and Number

2000-06-19
2000-01-1877
A vehicle investigation programme was initiated to evaluate the influence of diesel fuel sulfur content on the performance of a DeNOx catalyst for NOx control. The programme was conducted with a passive DeNOx catalyst, selected for its good NOx reduction performance and two specially prepared fuels with different sulfur contents. Regulated emissions were measured and analysed during the course of the programme. The NOx conversion efficiency of the DeNOx catalyst increased from 14 to 26% over the new European test cycle when the sulfur content of the diesel fuel was reduced from 49 to 6 wt.-ppm. In addition the number and size of particles produced using 6 wt.-ppm sulfur fuel were measured by two different techniques: mobility diameter by SMPS and aerodynamic diameter by impactor. The influence of the assumed density of the particulate on the apparent diameters measured by the two techniques is discussed.
Technical Paper

Development of a Charge Motion Controlled Combustion System for DI SI-Engines and its Vehicle Application for EU-4 Emission Regulations

2000-03-06
2000-01-0257
The development of new passenger car powertrains with gasoline direct injection engines is facing new requirements which result from the need of different operational modes with stratified and homogeneous air fuel mixture. Moreover, the exhaust aftertreatment system causes a discontinuous operation with lean burn adsorption periods followed by short rich spikes for catalyst regeneration. Recent work on combustion system development has shown, that gasoline direct injection can create significant fuel economy benefits. Charge motion controlled combustion systems have proven to be of advantage in terms of low raw emissions compared to wall guided concepts. Based on an initial single-cylinder development phase a multi-cylinder engine was realized with excellent fuel economy, low raw emissions and operational robustness. Finally, the new engine's potential has been demonstrated in a mid-class vehicle.
Technical Paper

Cold Start Emission Reduction by Barrier Discharge

2000-10-16
2000-01-2891
Dielectric barrier discharge (DBD) offers the advantage to excite and dissociate molecules in the exhaust gas stream. Those dissociated and excited species are oxidizing or reducing harmful exhaust gas components. The advantage of a plasma chemical system in comparison to a catalytic measure for exhaust gas treatment is the instantaneous activity at ambient temperature from the starting of the engine. The investigations reviewed in this paper are dealing with the plasma chemical oxidation of hydrocarbons in the exhaust gas stream during cold start conditions. The article concerns the design and development of a plasma-system in order to decrease the hydrocarbon emissions from engine start till catalyst light off. Vehicle results in the New European Driving Cycle show a hydrocarbon conversion of more than 42% in the first 11 seconds from engine start. In this period nearly all types of hydrocarbon were reduced.
X