Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Low fuel consumption and low emissions~Electromechanical valve train in vehicle operation

2000-06-12
2000-05-0018
The electromechanical valve train (EMV) technology allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement can be used for each individual cylinder and engine cycle. A load control strategy using a "Late Intake Valve Open" (LIO) provides a reduction in start-up HC emissions of approximately 60%. Due to reduced wall-wetting, the LIO control strategy improves the transition from start to idle.
Technical Paper

Benefits of the Electromechanical Valve Train in Vehicle Operation

2000-03-06
2000-01-1223
One of the most promising methods to reduce fuel consumption is to use unthrottled engine operation, where load control occurs by means of variable valve timing with an electromechanical valve train (EMV) system. This method allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement is made possible from the start of the first cycle. A load control strategy using a “Late Intake Valve Open” (LIO) provides a reduction in start-up HC emissions of approximately 60%.
Technical Paper

Synergies of Variable Valve Actuation and Direct Injection

2002-03-04
2002-01-0706
The main goal in the development of new automobile SI engines is to significantly reduce fuel consumption. To this end both, variable valve actuation and direct gasoline injection, are being pursued as new engine concepts. Both approaches appear to offer approximately the same potential to reduce fuel consumption. The development so far is creating the impression of two competing technical concepts with no obvious way to combine them [1]. The two engine concepts, however, can be combined, although it is often objected that their combination would only yield marginal additional potential. That is true to the extent that the advantages of dethrottling offered by both of the concepts can only be counted once in terms of overall potential. But there is a number of additional effects to be taken into account. This Paper represents an analysis of the individual potential of the two approaches as well as an estimation of their combined potential.
X