Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Characterization of a New Advanced Diesel Oxidation Catalyst with Low Temperature NOx Storage Capability for LD Diesel

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Video

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-05-30
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Technical Paper

Development of a charge motion controlled combustion system for DI SI engines and its vehicle application to EU-4 emission regulations

2000-06-12
2000-05-0058
The development of new passenger car powertrains with gasoline direct- injection engines is facing new requirements which result from the need of different operational modes with stratified and homogeneous air-fuel mixture. Moreover, the exhaust aftertreatment system causes a discontinuous operation with lean-burn absorption periods followed by short rich spikes for catalyst regeneration. Recent work on combustion system development has shown, that gasoline direct injection can create significant fuel economy benefits. Charge motion controlled combustion systems have proven to be of advantage in terms of low raw emissions compared to wall-guided concepts. Based on an initial single-cylinder development phase, a multi-cylinder engine was realized with excellent fuel economy, low raw emissions and operational robustness. Finally, the new engine''s potential has been demonstrated in a mid-class vehicle.
Technical Paper

Performance of Combination Particulate/Gaseous Contaminant Air Filters in the Highway and Street Traffic Environment

2007-04-16
2007-01-1425
Automotive cabin filters of the “combo” type are intended to remove both aerosols and gaseous contaminants from air entering the climate control system. We analyze the performance of two filters of this type, using published values for the concentration of gaseous contaminants found in highway and street traffic. Using existing expressions for the performance of activated carbons, including the effects of contaminant concentration, flow rate and carbon bed depth, we calculate retentivity and breakthrough time for benzene and carbon tetrachloride at street-level concentrations. The calculated factors are compared to published test data on similar filters.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Application of Combustion Sound Level (CSL) Analysis for Powertrain

2009-05-19
2009-01-2168
Powertrain noise is a significant factor in determination of the overall vehicle refinement expected by today's discriminating automotive customer. Development of a powertrain to meet these expectations requires a thorough understanding of the contributing noise sources. Specifically, combustion noise greatly impacts the perception of sound levels and quality. The relevance of combustion noise development has increased with the advent of newer efficiency-driven technologies such as direct injection or homogeneous charge compression ignition. This paper discusses the application of a CSL (Combustion Sound Level) analysis-a method for the identification and optimization of combustion noise. Using CSL, it is possible to separate mechanical and combustion noise sources.
Technical Paper

LOTUS: A Co-operation for Low Temperature Urea-Based Selective Catalytic Reduction of NOx

2004-03-08
2004-01-1294
The European research co-operation Lotus is presented. The main objectives of the project were i) to show the potential for a urea-based SCR system to comply with the EU standard of years 2005 and 2008 for heavy-duty Diesel engines for different driving conditions with optimal fuel consumption, ii) to reach 95 % conversion of NOx at steady state at full load on a Euro III engine, iii) to reach 75 % NOx reduction for exhaust temperatures between 200-300°C, and 85 % average NOx reduction between 200-500°C. The energy content of the consumed urea should not exceed 1.0 %, calculated as specific fuel consumption. These targets were met in May 2003 and the Lotus SCR system fulfilled the Euro V NOx legislative objectives for year 2008.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Diesel Combustion Control with Closed-Loop Control of the Injection Strategy

2008-04-14
2008-01-0651
Current and future emission legislations require a significant reduction of engine-out emissions for Diesel engines. For a further reduction of engine-out emissions, different measures are necessary such as: Especially an advanced emission and closed-loop combustion control has gained increased significance during the past years.
Journal Article

Use of an Innovative Predictive Heat Release Model Combined to a 1D Fluid-Dynamic Model for the Simulation of a Heavy Duty Diesel Engine

2013-09-08
2013-24-0012
An innovative 0D predictive combustion model for the simulation of the HRR (heat release rate) in DI diesel engines was assessed and implemented in a 1D fluid-dynamic commercial code for the simulation of a Fiat heavy duty diesel engine equipped with a Variable Geometry Turbocharger system, in the frame of the CORE (CO2 reduction for long distance transport) Collaborative Project of the European Community, VII FP. The 0D combustion approach starts from the calculation of the injection rate profile on the basis of the injected fuel quantities and on the injection parameters, such as the start of injection and the energizing time, taking the injector opening and closure delays into account. The injection rate profile in turn allows the released chemical energy to be estimated. The approach assumes that HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber.
Journal Article

Modelling and Simulation of Brake Booster Vacuum Pumps

2013-05-15
2013-01-9016
Aim of this work is the development of a lumped parameters simulation model of single-vane vacuum pumps for pneumatically actuated brake boosters. Kinematic and fluid-dynamic models are integrated in a simulation environment to create a tool aimed at evaluating the vacuum pump performance and at guiding the designer during the prototype development. The paper describes extensively the mathematical model, the time domain simulation and experimental analyses performed on a camshaft mounted unit. Great emphasis is placed on the evaluation of the geometric quantities of the control volumes into which the vacuum pump has been divided. For each control volume the mass and energy conservation equations lead to the determination of the instantaneous pressure. The volume of each variable chamber and the respective angular derivative are calculated as function of the shaft position starting from the stator track profile supplied as a generic closed polyline.
Technical Paper

Experimental Investigation on Three Different Ceramic Substrate Materials for a Diesel Particulate Filter

2013-09-08
2013-24-0160
Three different ceramic substrate materials (Silicon Carbide, Cordierite and Aluminum Titanate) for a Diesel Particulate Filter (DPF) for a European passenger car diesel engine have been experimentally investigated in this work. The filters were soot loaded under real world operating conditions on the road and then regenerated in two different ways that simulate the urban driving conditions, which are the most severe for DPF regeneration, since the low exhaust flow has a limited capability to absorb the heat generated by the soot combustion. The tests showed higher temperature peaks, at the same soot loading, for Cordierite and Aluminum Titanate compared to the Silicon Carbide, thus leading to a lower soot mass limit, which in turn required for these components a higher regeneration frequency with draw backs in terms of fuel consumption and lube oil dilution.
Journal Article

Impact on Performance, Emissions and Thermal Behavior of a New Integrated Exhaust Manifold Cylinder Head Euro 6 Diesel Engine

2013-09-08
2013-24-0128
The integration of the exhaust manifold in the engine cylinder head has received considerable attention in recent years for automotive gasoline engines, due to the proven benefits in: engine weight diminution, cost saving, reduced power enrichment, quicker engine and aftertreatment warm-up, improved packaging and simplification of the turbocharger installation. This design practice is still largely unknown in diesel engines because of the greater difficulties, caused by the more complex cylinder head layout, and the expected lower benefits, due to the absence of high-load enrichment. However, the need for improved engine thermomanagement and a quicker catalytic converter warm-up in efficient Euro 6 diesel engines is posing new challenges that an integrated exhaust manifold architecture could effectively address. A recently developed General Motors 1.6L Euro 6 diesel engine has been modified so that the intake and exhaust manifolds are integrated in the cylinder head.
Technical Paper

Prediction of Hydrodynamic Bearing Behaviour for Pre-layout of Cranktrain Dimensions

2010-10-25
2010-01-2186
Calculating the bearing reliability and behavior is one of the primary tasks which have to be performed to define the main dimensions of the cranktrain of an internal combustion engine. Since the bearing results are essential for the pre-layout of the cranktrain, the conclusion on the bearing safety should be met as early as possible. Therefore detailed simulations like T-EHD or EHD analysis may not be applied to define the dimensions in such an early development phase. In the frame of this study a prediction methodology, based on a HD bearing approach, for bearing reliability of inline-4 crankshafts of passenger cars is proposed. In this way not only the design phase is shortened but also achieving the optimal solution is simplified. Moreover the requirement of a CAD model is eliminated for the preliminary design phase. The influencing parameters on the bearing behavior are first selected and divided into two groups: geometry and loading.
Technical Paper

Experimental Analysis of the Combustion Process of Commercial and Reference Fuels on the CFR Laboratory Engine

2010-10-25
2010-01-2265
As in the standard American Society for Testing and Materials (ASTM) procedure which is used to evaluate the fuel Octane Number (ON), some signal properties are considered, while others are neglected, it happens that different pressure signals of the sensor, obtained from different fuels and operating conditions, can lead to the same Knock Intensity index (KI) value, even though the knock behavior is not the same. Therefore the aim of this work was to analyze the standard signal processing chain of the Cooperative Fuel Research engine (CFR) (from the pressure sensor to the knock-meter display) and its effects on the value of the KI, for different fuels and operating conditions.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Technical Paper

Real-Time Calculation of EGR Rate and Intake Charge Oxygen Concentration for Misfire Detection in Diesel Engines

2011-09-11
2011-24-0149
A new procedure for the real-time estimation of the EGR rate and charge oxygen concentration has been developed, assessed and applied to a low-compression ratio GMPT-E EURO V diesel engine. High EGR rates are usually employed in modern diesel engines to reduce combustion temperatures and NOx emissions, especially at medium-low load and speed conditions. The EGR rate is usually calibrated in steady-state conditions, but, under transient conditions, it can be responsible for misfire occurrence or non optimal combustion cycles, if not properly controlled. In other words, combustion instabilities can occur, especially during tip-in maneuvers, which imply transition from high EGR (low load) to low EGR (high load) rates. Misfire is determined by a temporary reduction in the intake charge oxygen concentration during the closure of the EGR valve.
Technical Paper

Architecture of a Detailed Three Dimensional Piston Ring Model

2011-09-11
2011-24-0159
Piston rings are faced with a broad range of demands like optimal sealing properties, wear properties and reliability. Even more challenging boundary conditions must be met when latest developments in the fields of direct injection as well as the application of bio fuels. This complex variety of piston ring design requirements leads to the need of a comprehensive simulation model in order to support the development in the early design phase prior to testing. The simulation model must be able to provide classical objectives like friction analysis, wear rate and blow-by. Furthermore, it must include an adequate oil consumption model. The objective of this work is to provide such a simulation model that is embedded in the commercial MBS software ‘FEV Virtual Engine’. The MBS model consists of a cranktrain assembly with a rigid piston that contains flexible piston rings.
Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
X