Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Spray Analysis of C8H18O Fuel Blends Using High-Speed Schlieren Imaging and Mie Scattering

2015-09-06
2015-24-2478
Targeted fuel blending is a known method to improve the performance of an automotive engine. Two candidates for a biofuel blend are the linear C8H18O isomers 1-octanol and di-n-butyl ether (DNBE). Both fuels feature an increased amount of oxygen that reduces soot emissions. However, physical properties of both fuels differ significantly and thus, a different type of spray mixing and combustion is expected: The low reactivity of 1-octanol causes a long ignition delay enabling a better mixture homogenization, but also causes HC and CO emissions. DNBE in contrary is highly volatile, has a short ignition time and thus can act as an ignition booster for 1-octanol without losing positive effects concerning emissions. In this work a spray study is performed for blends of 1-octanol and DNBE. Measurements are conducted under diesel-like engine conditions with an 8-hole piezo injector. High-speed Schlieren and Mie scattering techniques are used for spray visualizations.
Journal Article

Influence of In-Cylinder Air Flow on Spray Propagation

2017-06-29
2017-01-9280
The influence of in-cylinder flow on the propagation of 2-Butanone and Ethanol sprays is studied. To solely evaluate the interaction of air flow and fuel, high-speed Mie-Scattering Imaging of hollow cone sprays is conducted both in a single-cylinder optical engine with tumble movement and in a pressure vessel with negligible air flow. The direct comparison reveals an improved spray propagation of 2-Butanone due to the engine’s air flow. The lower viscosity of 2-Butanone causes an enhanced jet breakup compared to Ethanol such that the spray consists of more and smaller droplets. Small droplets possess a lower momentum, which allows the droplets to be more efficiently transported by the air flow. Consequently, the fuel distribution across the cylinder is enhanced. As the liquid fuel is distributed to a larger volume, improved convection accelerates evaporation.
X