Refine Your Search



Search Results

Technical Paper

Experimental Investigation of the Spray Characteristics of Di-n-Butyl Ether (DNBE) as an Oxygenated Compound in Diesel Fuel

Increasing concern for the environment and the impending scarcity of fossil fuels requires continued development in hydrocarbon combustion science. For compression-ignition engines, adding oxygenated compounds to the fuel can reduce noise, soot formation, and unburned hydrocarbons while simultaneously increasing thermal efficiency. In order to reliably model and design compression-ignition engines to use new fuel blends, accurate spray characteristic data is required. In this study, the spray characteristics of various blends of the oxygenated compound di-n-butyl ether (DNBE) with standard EN590 Diesel fuel are presented, including spray cone angle and spray penetration length for both liquid and gas phases. The experiments were conducted in a spray chamber at ambient conditions of 50 bar and 800 K, simulating TDC conditions in a Diesel engine. Injection pressures were varied from 700-1600 bar.
Technical Paper

Efficient Power Electronic Inverter Control Developed in an Automotive Hardware-in-the-Loop Setup

Hardware-in-the-Loop is a common and established testing method for automotive developments in order to study interactions between different vehicle components during early development phases. Hardware-in-the-Loop setups have successfully been utilized within several development programs for conventional and electrified powertrains already. However, there is a particular shortage of studies focusing on the development of inverter controls utilizing Hardware-in-the-Loop tests. This contribution shall provide a first step toward closing this gap. In this article, inverter controls with different pulse width modulations for varying modulation index are studied at a Hardware-in-the-Loop setup. Thereto, the inverter control for an interior permanent magnet synchronous machine is developed utilizing space vector pulse width modulation with overmodulation.
Technical Paper

Investigation of Predictive Models for Application in Engine Cold-Start Behavior

The modern engine development process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. It is expected that predictive simulation tools that encompass the entire powertrain can potentially improve the efficiency of the calibration process. The testing of an ECU using a HiL system requires a real-time model. Additionally, if the initial parameters of the ECU are to be defined and tested, the model has to be more accurate than is typical for ECU functional testing. It is possible to enhance the generalization capability of the simulation, with neuronal network sub-models embedded into the architecture of a physical model, while still maintaining real-time execution. This paper emphasizes the experimental investigation and physical modeling of the port fuel injected SI engine.
Technical Paper

HiL-based ECU-Calibration of SI Engine with Advanced Camshaft Variability

A main focus of development in modern SI engine technology is variable valve timing, which implies a high potential of improvement regarding fuel consumption and emissions. Variable opening, period and lift of inlet and outlet valves enable numerous possibilities to alter gas exchange and combustion. However, this additional variability generates special demands on the calibration process of specific engine control devices, particularly under cold start and warm-up conditions. This paper presents procedures, based on Hardware-in-the-Loop (HiL) simulation, to support the classical calibration task efficiently. An existing approach is extended, such that a virtual combustion engine is available including additional valve timing variability. Engine models based purely on physical first principles are often not capable of real time execution. However, the definition of initial parameters for the ECU requires a model with both real time capability and sufficient accuracy.
Technical Paper

Complex Air Path Management Systems and Necessary Controller Structures for Future High Dynamic Requirements

The future worldwide emission regulations will request a drastic decrease of Diesel engine tailpipe emissions. Depending on the planned application and the real official regulations, a further strong decrease of engine out emissions is necessary, even though the utilized exhaust after-treatment systems are very powerful. To reduce NOx emissions internally, the external exhaust gas recirculation (EGR) is known as the most effective way. Due to the continuously increasing requirements regarding specific power, dynamic behavior and low emissions, future air path systems have to fulfill higher requirements and, consequently, become more and more complex, e.g. arrangements with a 2-stage turbo charging or 2-stage EGR system with different stages of cooling performance.
Technical Paper

Experimental Investigation of the Effect of Multiple Injections on Pollutant Formation in a Common-Rail DI Diesel Engine

In Common-Rail DI Diesel Engines, multiple injection strategies are considered as one of the methodologies to achieve optimum performance and emission reduction. However, multiple injections open a whole new horizon of parameters which affect the combustion process. These parameters include the number of injection events, the duration between the starts of each injection event, the splitting of the total fuel mass on the different injection events, etc. In the present work, the influence of the number of injection events and the influence of the duration between the starts of each injection event on emission levels are investigated. Combustion and pollutant formation were experimentally investigated in a Common-Rail DI Diesel engine. The engine was operated at conventional part-load conditions with 2000 rpm, no external EGR, and an injected fuel mass of 15 mg/cycle.
Technical Paper

Optimised Neat Ethanol Engine with Stratified Combustion at Part-load; Particle Emissions, Efficiency and Performance

A regular flex-fuel engine can operate on any blend of fuel between pure gasoline and E85. Flex-fuel engines have relatively low efficiency on E85 because the hardware is optimized for gasoline. If instead the engine is optimized for neat ethanol, the efficiency may be much higher, as demonstrated in this paper. The studied two-liter engine was modified with a much higher compression ratio than suitable for gasoline, two-stage turbocharging and direct injection with piezo-actuated outwards-opening injectors, a stratified combustion system and custom in-house control system. The research engine exhibited a wide-open throttle performance similar to that of a naturally aspirated v8, while offering a part-load efficiency comparable to a state-of-the-art two-liter naturally aspirated engine. NOx will be handled by a lean NOx trap. Combustion characteristics were compared between gasoline and neat ethanol.
Technical Paper

Arttest – a New Test Environment for Model-Based Software Development

Modern vehicles become increasingly software intensive. Software development therefore is critical to the success of the manufacturer to develop state of the art technology. Standards like ISO 26262 recommend requirement-based verification and test cases that are derived from requirements analysis. Agile development uses continuous integration tests which rely on test automation and evaluation. All these drove the development of a new model-based software verification environment. Various aspects had to be taken into account: the test case specification needs to be easily comprehensible and flexible in order to allow testing of different functional variants. The test environment should support different use cases like open-loop or closed-loop testing and has to provide corresponding evaluation methods for continuously changing as well as for discrete signals.
Technical Paper

Automation of Road Vehicles Using V2X: An Application to Intersection Automation

Today, automated vehicles mostly rely on ego vehicle sensors such as cameras, radar or LiDAR sensors that are limited in their sensing capability and range. Vehicle-to-everything (V2X) communication has the potential to appropriately complement these sensors and even allow for a cooperative, proactive interaction of vehicles. As such, V2X communication might play a vital role on the way to smart and efficient traffic solutions. In the public funded research project UK Autodrive, we are currently investigating and experimentally evaluating V2X-based applications based on dedicated short range communication (DSRC). Moreover, the novel application intersection priority management (IPM) is part of the research project. IPM aims at automating intersections in such a way that vehicles can pass safely and even more efficiently without the use of traffic lights or signs.
Technical Paper

Droplet Velocity Measurements in Direct-Injection Diesel Sprays Under High-Pressure and High-Temperature Conditions by Laser Flow Tagging

The droplet velocity is an important parameter for breakup, evaporation, and combustion of Diesel sprays, but it is very difficult to measure it by widely used laser diagnostic techniques like PDA, PIV and LCV under realistic high-pressure and high-temperature conditions. This is basically caused by laser beam steering and multiple scattering of light due to very high droplet densities, in particular close to the nozzle. It was demonstrated recently, that these problems can be greatly reduced by the laser flow tagging (LFT) technique. For this purpose, the model fuel is doped with a phosphorescent tracer. A number of droplet groups within the spray are tagged by illuminating them with focused beams of a pulsed laser, and their velocities are measured by recording the phosphorescence twice after each laser pulse using a double-frame ICCD.
Technical Paper

Generic Control Software Architecture for Battery Management Systems

Electrification is a key enabler to reduce emissions levels and noise in commercial vehicles. With electrification, Batteries are being used in commercial hybrid vehicles like city buses and trucks for kinetic energy recovery, boosting and electric driving. A battery management system monitors and controls multiple components of a battery system like cells, relays, sensors, actuators and high voltage loads to optimize the performance of a battery system. This paper deals with the development of modular control architecture for battery management systems in commercial vehicles. The key technical challenges for software development in commercial vehicles are growing complexity, rising number of functional requirements, safety, variant diversity, software quality requirements and reduced development costs. Software architecture is critical to handle some of these challenges early in the development process.
Technical Paper

Vehicle Application of a 4-Cylinder Tumble DISI Engine

SI engines with gasoline direct injection are currently the focus of development for almost all car manufacturers. After the introduction of DISI engines, first to the Japanese market and after a short time delay also in Europe, a broad variety of technical solutions for efficient stratified concepts can be stated. The targets of the development activities in this field are defined by legislation and customer's demands. The potential reduction of fuel consumption with stratified operation has to be combined with a further improvement of the full load potential of the DISI engine. A substantial part of the development activities are the fulfillment of current and future emission standards. Therefore, in order to realize a highly efficient lean operation, new technologies and strategies in the field of exhaust gas aftertreatment and vehicle application are required.
Technical Paper

Low Emission Concept for SULEV

Today, SULEV legislation represents the most stringent emission standard for vehicles with combustion engines, and it will be introduced starting by Model Year 2003. In order to meet such standards, even higher effort is required for the development of the exhaust gas emission concept of SI engines. Beyond a facelift of the combustion system, exhaust gas aftertreatment, and the engine management system, new approaches are striven for. The principle keys are well known: low HC feed gas, high thermal load for quick light-off, exhaust system with low heat capacity and highly effective exhaust gas aftertreatment.
Technical Paper

Oil Aeration in Combustion Engines - Analysis and Optimization

Like all technical fluids, lubricants are able to solve gases. While solved gas is a neutral part of the lubricant, dissolved gas has an influence especially on the compressibility behavior. The effects of oil aeration on engine drive causes malfunctions of several components. A successful optimization of the oil circulation concerning the oil aeration presupposes a safe and reproducible measuring procedure. The FEV has developed a measurement apparatus according to the principle of the volume measurement which allows a simple but efficient oil aeration measurement.
Technical Paper

A New TEHD Approach for Sophisticated Simulation of Journal Bearings

The new Thermo-Elasto-Hydro-Dynamic (TEHD) code developed by FEV, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Advanced analysis tools are evaluated by their performance as well as by their ease of use. High performance means on the one hand: taking into account all the important characteristics, like bearing elasticity or cavitation effects, to mention only some major parameters for modern journal bearing analysis. On the other hand: an economic run-time behavior must be a key feature concerning usability of the TEHD-demands for daily development praxis. Ease of use means also, that the TEHD model can easily be used as a plug-in routine of an already existing software package that is well known to the development departments.
Technical Paper

Start-Up Behavior of Fuel Processors for PEM Fuel Cell Applications

This paper focuses on start-up technology for fuel processing systems with special emphasis on gasoline fueled burners. Initially two different fuel processing systems, an autothermal reformer with preferential oxidation and a steam reformer with membrane, are introduced and their possible starting strategies are discussed. Energy consumption for preheating up to light-off temperature and the start-up time is estimated. Subsequently electrical preheating is compared with start-up burners and the different types of heat generation are rated with respect to the requirements on start-up systems. Preheating power for fuel cell propulsion systems necessarily reaches up to the magnitude of the electrical fuel cell power output. A gasoline fueled burner with thermal combustion has been build-up, which covers the required preheating power.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

The efficient operation of powertrain test benches in research and development is strongly influenced by the state of “health” of the functional test object. Hence, the use of Early Damage Detection Systems (EDDS) with Unit Under Test (UUT) monitoring is becoming increasingly popular. An EDDS should primarily avoid total loss of the test object and ensure that damaged parts are not completely destroyed, and can still be inspected. Therefore, any abnormality from the standard test object behavior, such as an exceeding of predefined limits, must be recognized at an early testing time, and must lead to a shutdown of the test bench operation. With sensors mounted on the test object, it is possible to isolate the damage cause in the event of its detection. Advanced EDDS configurations also optimize the predefined limits by learning new shutdown values according to the test object behavior within a very short time.
Technical Paper

Traffic Situation Assessment and Intervention Strategy of a Collision Avoidance System based on Galileo Satellite Positioning

Nowadays, collision avoidance systems (CAS) are an intensive research topic since the majority of all traffic accidents are collisions that are caused due to inattention or unadjusted driving behavior of the driver. Up to date prototypic CAS are based on on-board environmental sensors, such as camera or radar systems, that scan the vehicle's surrounding environment in order to assess the situation's hazardousness. The functionality of the used sensors under varying environmental conditions and the limited sensor covering area require an enormous effort to ensure a reliable detection of obstacles, and thus limit the application of the systems. In order to expand the operating field of such systems, a Galileo-based CAS will be developed within the project ‘Galileo above’ (application centre for ground based traffic).
Technical Paper

Model-in-the-Loop Testing of SOC and SOH Estimation Algorithms in Battery Management Systems

With the increasing application of the lithium ion battery technology in automotive industry, development processes and validation methods for the battery management system (BMS) have drawn more and more attentions. One fundamental function of the BMS is to continuously estimate the battery’s state-of-charge (SOC) and state-of-health (SOH) to guarantee a safe and efficient operation of the battery system. For SOC as well as SOH estimations of a BMS, there are certain non-ideal situations in a real vehicle environment such as measurement inaccuracies, variation of cell characteristics over time, etc. which will influence the outcome of battery state estimation in a negative way. Quantifying such influence factors demands extensive measurements. Therefore, we have developed a model-in-the-loop (MIL) environment which is able to simulate the operating conditions that a BMS will encounter in a vehicle.
Technical Paper

Method for Analytical Calculation of Harmonic Content of Auto-Transformer Rectifier Units

Auto transformer rectifier units (ATRUs) are commonly used in aircraft applications such as electric actuation for harmonic mitigation due to their high reliability and relative low cost. However, those components and the magnetic filter components associated to it are the major contributors to the overall size and weight of the system. Optimization of the magnetic components is essential in order to minimize weight and size, which are major market drivers in aerospace industry today. This requires knowledge of the harmonic content of the current. This can be obtained by simulation, but the process is slow. In order to enable fast and efficient design space exploration of optimal solutions, an algebraic calculation process is proposed in this paper for multi-pulse ATRUs (e.g. 12-pulse and 18-pulse rectifiers), starting from existing solution proposed for 6 pulse rectifier in the literature.