Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of a charge motion controlled combustion system for DI SI engines and its vehicle application to EU-4 emission regulations

2000-06-12
2000-05-0058
The development of new passenger car powertrains with gasoline direct- injection engines is facing new requirements which result from the need of different operational modes with stratified and homogeneous air-fuel mixture. Moreover, the exhaust aftertreatment system causes a discontinuous operation with lean-burn absorption periods followed by short rich spikes for catalyst regeneration. Recent work on combustion system development has shown, that gasoline direct injection can create significant fuel economy benefits. Charge motion controlled combustion systems have proven to be of advantage in terms of low raw emissions compared to wall-guided concepts. Based on an initial single-cylinder development phase, a multi-cylinder engine was realized with excellent fuel economy, low raw emissions and operational robustness. Finally, the new engine''s potential has been demonstrated in a mid-class vehicle.
Technical Paper

LOTUS: A Co-operation for Low Temperature Urea-Based Selective Catalytic Reduction of NOx

2004-03-08
2004-01-1294
The European research co-operation Lotus is presented. The main objectives of the project were i) to show the potential for a urea-based SCR system to comply with the EU standard of years 2005 and 2008 for heavy-duty Diesel engines for different driving conditions with optimal fuel consumption, ii) to reach 95 % conversion of NOx at steady state at full load on a Euro III engine, iii) to reach 75 % NOx reduction for exhaust temperatures between 200-300°C, and 85 % average NOx reduction between 200-500°C. The energy content of the consumed urea should not exceed 1.0 %, calculated as specific fuel consumption. These targets were met in May 2003 and the Lotus SCR system fulfilled the Euro V NOx legislative objectives for year 2008.
Technical Paper

An Experimental Investigation of Combustion and Soot Formation of Sprays from Cluster Nozzles for DI Diesel Engines

2009-04-20
2009-01-0855
One of the basic topics in the design of new injection systems for DI Diesel engines is to decrease the soot emissions. A promising approach to minimize soot production are nozzles with clustered holes. A basic idea of the Cluster Configuration (CC) nozzles is to prevent a fuel rich area in the center of the flame where most of the soot is produced, and to minimize the overall soot formation in this way. For this purpose each hole of a standard nozzle is replaced by two smaller holes. The diameter of the smaller holes is chosen so that the flow rate of all nozzles should be equal. The basic strategy of the cluster nozzles is to provide a better primary break up and therefore a better mixture formation caused by the smaller nozzle holes, but a comparable penetration length of the vapor phase due to merging of the sprays. Three possible arrangements of the clustered holes are investigated in this study. Both the cluster angle and the orientation to the injector axis are varied.
Technical Paper

Injection Rate Shaping Investigations on a Small – Bore DI Diesel Engine

2009-04-20
2009-01-0850
So far, the effect of injection rate shaping on the diesel combustion in small-bore DI diesel engines has not been extensively investigated, especially at high part load conditions with high EGR rates. The benefit of injection rate shaping is already verified for heavy duty engines at high load conditions with and without EGR. For this investigation, single cylinder engine investigations were conducted at the VKA / RWTH Aachen University. In order to meet the future NOx legislation limits like US-Tier2Bin5 it is crucial to reduce NOx especially at the high load points of the certification cycles, as FTP75 or US06. For the single cylinder investigations two part load points were chosen, which have relevance for the mentioned certification cycles. The experimental work focuses on different rate shapes as rectangular (Common-Rail type), ramp and boot shape at high EGR rates.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Technical Paper

Experimental Investigation of the Spray Characteristics of Di-n-Butyl Ether (DNBE) as an Oxygenated Compound in Diesel Fuel

2010-05-05
2010-01-1502
Increasing concern for the environment and the impending scarcity of fossil fuels requires continued development in hydrocarbon combustion science. For compression-ignition engines, adding oxygenated compounds to the fuel can reduce noise, soot formation, and unburned hydrocarbons while simultaneously increasing thermal efficiency. In order to reliably model and design compression-ignition engines to use new fuel blends, accurate spray characteristic data is required. In this study, the spray characteristics of various blends of the oxygenated compound di-n-butyl ether (DNBE) with standard EN590 Diesel fuel are presented, including spray cone angle and spray penetration length for both liquid and gas phases. The experiments were conducted in a spray chamber at ambient conditions of 50 bar and 800 K, simulating TDC conditions in a Diesel engine. Injection pressures were varied from 700-1600 bar.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

2011-04-12
2011-01-1391
The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
Technical Paper

A New CFD Approach for Assessment of Swirl Flow Pattern in HSDI Diesel Engines

2010-09-28
2010-32-0037
The fulfillment of the aggravated demands on future small-size High-Speed Direct Injection (HSDI) Diesel engines requires next to the optimization of the injection system and the combustion chamber also the generation of an optimal in-cylinder swirl charge motion. To evaluate different port concepts for modern HSDI Diesel engines, usually quantities as the in-cylinder swirl ratio and the flow coefficient are determined, which are measured on a steady-state flow test bench. It has been shown that different valve lift strategies nominally lead to similar swirl levels. However, significant differences in combustion behavior and engine-out emissions give rise to the assumption that local differences in the in-cylinder flow structure caused by different valve lift strategies have noticeable impact. In this study an additional criterion, the homogeneity of the swirl flow, is introduced and a new approach for a quantitative assessment of swirl flow pattern is presented.
Technical Paper

Diesel Engine Cold Start Noise Improvement

2005-05-16
2005-01-2490
The European as well as U.S. market share of modern Diesel engines has increased significantly in recent years, due to their excellent torque and performance behavior combined with low fuel consumption. The overall improved noise and vibration behavior of modern Diesel engines has also contributed to this trend. Despite overall improvements in Diesel engine noise and vibration, certain aspects of Diesel engines continue to present significant challenges. One such issue is the presence of Diesel knocking that is prevalent during cold start and warm-up conditions. This paper discusses a technique used to optimize the cold start noise behavior of modern Diesel engines. The methods used in this study are based on optimizing the engine calibration to improve the vehicle interior and exterior (engine) noise, even at low ambient temperatures.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

2006-04-03
2006-01-0232
In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Technical Paper

Opposed Piston Opposed Cylinder (opoc™) 450 hp Engine: Performance Development by CAE Simulations and Testing

2006-04-03
2006-01-0277
The new opoc™ diesel engine concept was presented at the SAE 2005 World Congress [1]. Exceptional power density of >1hp/lb and >40% efficiency have been predicted for the 2-stroke opoc™ diesel engine concept. Intensive CAE simulations have been performed during the concept and design phase in order to define the baseline scavenging and combustion parameters, such as port timing, turbocharger configuration and fuel injection nozzle design. Under a DARPA contract, first prototype engines have been built and have undergone a validation testing program. The main goal of the first testing phase was to demonstrate the power output capability of the new engine concept. In close relationship and interaction of testing and CAE simulation, the uniflow scavenging process and parameters of the special diesel direct side injection have been optimized. This paper discusses the latest results of the opoc engine development.
Technical Paper

Combined Simulations and OH-Chemiluminescence Measurements of the Combustion Process using Different Fuels under Diesel-Engine like Conditions

2007-01-23
2007-01-0020
The influence of different fuels and injection pressures on the flame lift-off length (LOL), as well as the combustion structure under quiescent conditions in a heated high-pressure vessel were experimentally investigated using OH chemiluminescence measurements. This data was used to validate the newly developed G-equation coupled with MRIF (G-MRIF) model, which was designed to describe the lifted Diesel combustion process. The achieved results are very promising and could be used as a tool to apply this combustion mode into Diesel engines. Furthermore these measurements were used to validate the approach of a new combustion model, which was developed using former OH chemiluminescence measurements by the authors. Based on this approach the LOL is mainly determined by auto-ignition and therefore highly dependent on the cetane number. This model is presented in more detail within this work.
Technical Paper

Influence of the Nozzle Spray Angle on Pollutant Formation and Combustion Efficiency for a PCCI Diesel Engine

2009-04-20
2009-01-1445
In Common-Rail DI Diesel Engines, a low combustion temperature process is considered as one of the most important possibilities to achieve very small emissions and optimum performance. To reduce NOx and Soot strongly, it is necessary to achieve a homogenization of the mixture in order to avoid the higher local temperatures which are responsible for the NOx formation [1]. Through the homogenization it is also possible to obtain a stoichiometric air-fuel ratio in order to significantly reduce the Soot emissions. One way to achieve this homogeneous condition is to start injection very early together with the use of higher EGR rates. The direct effect of these conditions cause a longer ignition delay (this is the time between start of the injection and auto-ignition during physical and chemical sub processes such as fuel atomization, evaporation, fuel air mixing and chemical pre-reactions take place) so that the mixture formation has more time to achieve a homogeneous state.
Technical Paper

Complex Air Path Management Systems and Necessary Controller Structures for Future High Dynamic Requirements

2009-05-13
2009-01-1616
The future worldwide emission regulations will request a drastic decrease of Diesel engine tailpipe emissions. Depending on the planned application and the real official regulations, a further strong decrease of engine out emissions is necessary, even though the utilized exhaust after-treatment systems are very powerful. To reduce NOx emissions internally, the external exhaust gas recirculation (EGR) is known as the most effective way. Due to the continuously increasing requirements regarding specific power, dynamic behavior and low emissions, future air path systems have to fulfill higher requirements and, consequently, become more and more complex, e.g. arrangements with a 2-stage turbo charging or 2-stage EGR system with different stages of cooling performance.
Technical Paper

Experimental Investigation of the Effect of Multiple Injections on Pollutant Formation in a Common-Rail DI Diesel Engine

2008-04-14
2008-01-1191
In Common-Rail DI Diesel Engines, multiple injection strategies are considered as one of the methodologies to achieve optimum performance and emission reduction. However, multiple injections open a whole new horizon of parameters which affect the combustion process. These parameters include the number of injection events, the duration between the starts of each injection event, the splitting of the total fuel mass on the different injection events, etc. In the present work, the influence of the number of injection events and the influence of the duration between the starts of each injection event on emission levels are investigated. Combustion and pollutant formation were experimentally investigated in a Common-Rail DI Diesel engine. The engine was operated at conventional part-load conditions with 2000 rpm, no external EGR, and an injected fuel mass of 15 mg/cycle.
Technical Paper

Development of a Charge Motion Controlled Combustion System for DI SI-Engines and its Vehicle Application for EU-4 Emission Regulations

2000-03-06
2000-01-0257
The development of new passenger car powertrains with gasoline direct injection engines is facing new requirements which result from the need of different operational modes with stratified and homogeneous air fuel mixture. Moreover, the exhaust aftertreatment system causes a discontinuous operation with lean burn adsorption periods followed by short rich spikes for catalyst regeneration. Recent work on combustion system development has shown, that gasoline direct injection can create significant fuel economy benefits. Charge motion controlled combustion systems have proven to be of advantage in terms of low raw emissions compared to wall guided concepts. Based on an initial single-cylinder development phase a multi-cylinder engine was realized with excellent fuel economy, low raw emissions and operational robustness. Finally, the new engine's potential has been demonstrated in a mid-class vehicle.
Technical Paper

Fuel Efficient Natural Gas Engine with Common-Rail Micro-Pilot Injection

2000-08-21
2000-01-3080
In the recent years, it has become obvious that one of the main fields of interest in alternate fuels is the public transportation sector. Natural Gas seems to be advantageous. It is available and environmentally friendly, even if the greenhouse effect of methane is considered. The operation range of vehicles running on CNG (Compressed Natural Gas) is poor due to the large pressure vessels, but in case of urban buses with low daily mileage this is acceptable. On the other hand, the use of an environmentally friendly fuel is favorable especially in urban areas. Although there are some advantages of Natural Gas, diesel buses dominate the market. The reason is the better part-load fuel efficiency of the Diesel principle which is superior to the Otto-cycle due to the absence of engine throttling. The efficiency levels of Spark-Ignition (SI) -type, Lean Burn Natural Gas engines are quite comparable to diesel engines during full load conditions.
Technical Paper

New CNG Concepts for Passenger Cars: High Torque Engines with Superior Fuel Consumption

2003-06-23
2003-01-2264
Since the CO2 emissions of passenger car traffic and their greenhouse potential are in the public interest, natural gas (CNG) is discussed as an attractive alternative fuel. The engine concepts that have been applied to date are mainly based upon common gasoline engine technology. In addition, in mono-fuel applications, it is made use of an increased compression ratio -thanks to the RON (Research Octane Number) potential of CNG-, which allows for thermodynamic benefits. This paper presents advanced engine concepts that make further use of the potentials linked to CNG. Above all, the improved knock tolerance, which can be particularly utilized in turbocharged engine concepts. For bi-fuel (CNG/gasoline) power trains, the realization of variable compression ratio is of special interest. Moreover, lean burn technology is a perfect match for CNG engines. Fuel economy and emission level are evaluated basing on test bench and vehicle investigations.
Technical Paper

Downsizing of Diesel Engines: 3-Cylinder / 4-Cylinder

2000-03-06
2000-01-0990
Due to the future application of combustion engines in small and hybrid vehicles, the demand for high efficiency with low mass and compact engine design is of prime importance. The diesel engine, with its outstanding thermal efficiency, is a well suited candidate for such applications. In order to realize these targets, future diesel engines will need to have increasingly higher specific output combined with increased power to weight ratios. This is therefore driving the need for new designs of 3 and/or 4 cylinder, small bore engines of low displacement, sub 1.5l. Recent work on combustion development, has shown that combustion systems, ports, valves and injector sizes are available for bore sizes down to 65 mm.
X