Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Experimental Investigation of the Spray Characteristics of Di-n-Butyl Ether (DNBE) as an Oxygenated Compound in Diesel Fuel

2010-05-05
2010-01-1502
Increasing concern for the environment and the impending scarcity of fossil fuels requires continued development in hydrocarbon combustion science. For compression-ignition engines, adding oxygenated compounds to the fuel can reduce noise, soot formation, and unburned hydrocarbons while simultaneously increasing thermal efficiency. In order to reliably model and design compression-ignition engines to use new fuel blends, accurate spray characteristic data is required. In this study, the spray characteristics of various blends of the oxygenated compound di-n-butyl ether (DNBE) with standard EN590 Diesel fuel are presented, including spray cone angle and spray penetration length for both liquid and gas phases. The experiments were conducted in a spray chamber at ambient conditions of 50 bar and 800 K, simulating TDC conditions in a Diesel engine. Injection pressures were varied from 700-1600 bar.
Technical Paper

Future of Combustion Engines

2006-10-16
2006-21-0024
Increasing shortages of energy resources as well as emission legislation is increasing the pressure to develop more efficient, environmentally friendly propulsion systems for vehicles. Due to its more than 125 years of history with permanent improvements, the internal combustion engine (ICE) has reached a very high development status in terms of efficiency and emissions, but also drivability, handling and comfort. Therefore, the IC engine will be the dominant propulsion system for future generations. This paper gives a survey on the present technical status and future prospects of internal combustion engines, both CI and SI engines, also including alternative fuels. In addition a brief overview of the potential of currently intensely discussed hybrid concepts is given.
Technical Paper

Vehicle Application of a 4-Cylinder Tumble DISI Engine

2001-03-05
2001-01-0735
SI engines with gasoline direct injection are currently the focus of development for almost all car manufacturers. After the introduction of DISI engines, first to the Japanese market and after a short time delay also in Europe, a broad variety of technical solutions for efficient stratified concepts can be stated. The targets of the development activities in this field are defined by legislation and customer's demands. The potential reduction of fuel consumption with stratified operation has to be combined with a further improvement of the full load potential of the DISI engine. A substantial part of the development activities are the fulfillment of current and future emission standards. Therefore, in order to realize a highly efficient lean operation, new technologies and strategies in the field of exhaust gas aftertreatment and vehicle application are required.
Technical Paper

Low Emission Concept for SULEV

2001-03-05
2001-01-1313
Today, SULEV legislation represents the most stringent emission standard for vehicles with combustion engines, and it will be introduced starting by Model Year 2003. In order to meet such standards, even higher effort is required for the development of the exhaust gas emission concept of SI engines. Beyond a facelift of the combustion system, exhaust gas aftertreatment, and the engine management system, new approaches are striven for. The principle keys are well known: low HC feed gas, high thermal load for quick light-off, exhaust system with low heat capacity and highly effective exhaust gas aftertreatment.
Technical Paper

Oil Aeration in Combustion Engines - Analysis and Optimization

2001-03-05
2001-01-1074
Like all technical fluids, lubricants are able to solve gases. While solved gas is a neutral part of the lubricant, dissolved gas has an influence especially on the compressibility behavior. The effects of oil aeration on engine drive causes malfunctions of several components. A successful optimization of the oil circulation concerning the oil aeration presupposes a safe and reproducible measuring procedure. The FEV has developed a measurement apparatus according to the principle of the volume measurement which allows a simple but efficient oil aeration measurement.
Technical Paper

Start-Up Behavior of Fuel Processors for PEM Fuel Cell Applications

2003-03-03
2003-01-0420
This paper focuses on start-up technology for fuel processing systems with special emphasis on gasoline fueled burners. Initially two different fuel processing systems, an autothermal reformer with preferential oxidation and a steam reformer with membrane, are introduced and their possible starting strategies are discussed. Energy consumption for preheating up to light-off temperature and the start-up time is estimated. Subsequently electrical preheating is compared with start-up burners and the different types of heat generation are rated with respect to the requirements on start-up systems. Preheating power for fuel cell propulsion systems necessarily reaches up to the magnitude of the electrical fuel cell power output. A gasoline fueled burner with thermal combustion has been build-up, which covers the required preheating power.
Technical Paper

A Modern Approach to Face Current and Future Testing Needs as Part of the Entire Development Process for Vehicles and Engines

2003-03-03
2003-01-1026
Nowadays lead times and quality demands for the development of entire vehicles, or components for them, require new methods, which must be supported by new tools. This paper describes the key demands to modern test cell equipment as well as solutions for the area of test cell management systems. An outlook to the evolution of the way of testing and the role of a test cell in the entire development process is given to discuss the needs and possible solutions of the future.
Technical Paper

Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System

2013-04-08
2013-01-0288
Downsizing in combination with turbocharging currently represents the main technology trend for meeting CO2 emissions with gasoline engines. Besides the well-known advantages of downsizing the compression ratio has to be reduced in order to mitigate knock at higher engine loads along with increased turbocharging demand to compensate for the reduction in power. Another disadvantage occurs at part load with increasing boost pressure levels causing the part load efficiencies to deteriorate. The application of a variable compression ratio (VCR) system can help to mitigate these disadvantages. The 2-stage VCR system with variable kinetic lengths entails variable powertrain components which can be used instead of the conventional components and thus only require minor modifications for existing engine architectures. The presented variable length connecting rod system has been continuously developed over the past years.
Technical Paper

Lightweight Automobiles ALLIANCE Project: First Results of Environmental and Economic Assessment from a Life-Cycle Perspective

2018-05-30
2018-37-0027
In the last years the research activities in the field of lightweighting have been advancing rapidly. The introduction of innovative materials and manufacturing technologies has allowed significant weight reduction. Despite this, novel technologies and materials have not reached a wide distribution. The reasons for this are mainly high production costs and environmental impacts of manufacturing that do not compensate benefits during operation. The paper deals with the AffordabLe LIghtweight Automobiles AlliaNCE (ALLIANCE) project which has the goal of developing novel advanced automotive materials and production technologies, aiming at an average 25% weight reduction over 100 k units/year, at costs of <3 €/kg. The article is focussed on Work Package 1 (WP1) of the project, aimed at estimating the full attributes of innovative design solutions by assessing costs, energy demand and GWP over the entire vehicle Life Cycle (LC).
Journal Article

Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines

2018-04-03
2018-01-0296
Direct injection (DI) compressed natural gas (CNG) engines are emerging as a promising technology for highly efficient and low-emission engines. However, the design of DI systems for compressible gas is challenging due to supersonic flows and the occurrence of shocks. An outwardly opening poppet-type valve design is widely used for DI-CNG. The formation of a hollow cone gas jet resulting from this configuration, its subsequent collapse, and mixing is challenging to characterize using experimental methods. Therefore, numerical simulations can be helpful to understand the process and later to develop models for engine simulations. In this article, the results of high-fidelity large-eddy simulation (LES) of a stand-alone injector are discussed to understand the evolution of the hollow cone gas jet better.
Technical Paper

Large-Eddy Simulation Study on Unsteady Effects in a Statistically Stationary SI Engine Port Flow

2015-04-14
2015-01-0373
Although spark-ignited engines have a considerable development history, the relevant flow physics and geometry design implications are still not fully understood. One reason is the lack of experimental and numerical methods with sufficiently high resolution or capabilities of capturing stochastic phenomena which could be used as part of the development cycle. More recently, Large-Eddy simulation (LES) has been identified as a promising technique to establish a better understanding of in-cylinder flow variations. However, simulations of engine configurations are challenging due to resolution as well as modeling requirements and computational cost for these unsteady multi-physics problems. LES on full engine geometries can even be prohibitively expensive. For this reason, the size of the computational LES domain is here reduced to the region of physical interest and boundary conditions are obtained from a RANS simulation of the whole experimental flow domain.
X