Refine Your Search

Topic

Author

Search Results

Technical Paper

Borderline Design of Crankshafts Based on Hybrid Simulation Technology

2009-06-15
2009-01-1918
This paper introduces different modeling approaches of crankshafts, compares the refinement levels and discusses the difference between the results of the crankshaft durability calculation methodologies. A V6 crankshaft is considered for the comparison of the refinement levels depending on the deviation between the signals such as main bearing forces and deflection angle. Although a good correlation is observed between the results in low speed range, the deviation is evident through the mid to high speed ranges. The deviation amplitude differs depending on the signal being observed and model being used. An inline 4 crankshaft is considered for the comparison of the durability results. The analysis results show that the durability potential is underestimated with a classical crankshaft calculation approach which leads to a limitation of maximum speed of 5500 rpm.
Technical Paper

An Experimental Investigation of Combustion and Soot Formation of Sprays from Cluster Nozzles for DI Diesel Engines

2009-04-20
2009-01-0855
One of the basic topics in the design of new injection systems for DI Diesel engines is to decrease the soot emissions. A promising approach to minimize soot production are nozzles with clustered holes. A basic idea of the Cluster Configuration (CC) nozzles is to prevent a fuel rich area in the center of the flame where most of the soot is produced, and to minimize the overall soot formation in this way. For this purpose each hole of a standard nozzle is replaced by two smaller holes. The diameter of the smaller holes is chosen so that the flow rate of all nozzles should be equal. The basic strategy of the cluster nozzles is to provide a better primary break up and therefore a better mixture formation caused by the smaller nozzle holes, but a comparable penetration length of the vapor phase due to merging of the sprays. Three possible arrangements of the clustered holes are investigated in this study. Both the cluster angle and the orientation to the injector axis are varied.
Technical Paper

Prediction of Hydrodynamic Bearing Behaviour for Pre-layout of Cranktrain Dimensions

2010-10-25
2010-01-2186
Calculating the bearing reliability and behavior is one of the primary tasks which have to be performed to define the main dimensions of the cranktrain of an internal combustion engine. Since the bearing results are essential for the pre-layout of the cranktrain, the conclusion on the bearing safety should be met as early as possible. Therefore detailed simulations like T-EHD or EHD analysis may not be applied to define the dimensions in such an early development phase. In the frame of this study a prediction methodology, based on a HD bearing approach, for bearing reliability of inline-4 crankshafts of passenger cars is proposed. In this way not only the design phase is shortened but also achieving the optimal solution is simplified. Moreover the requirement of a CAD model is eliminated for the preliminary design phase. The influencing parameters on the bearing behavior are first selected and divided into two groups: geometry and loading.
Technical Paper

Experimental Investigation of Droplet Size and Velocity in Clustered Diesel Sprays under High-Pressure and High-Temperature Conditions

2010-10-25
2010-01-2240
An experimental study on the interaction of sprays from clustered orifices is presented. Droplet size and velocity information has been gained by means of Phase Doppler Anemometry for different nozzle configurations varying the diverging opening angle between clustered sprays from 0° to 15°. These nozzles were investigated under high-pressure (50 bar) and high-temperature (800 K) conditions in a pressure chamber and the results are compared to two standard nozzles with flow rates corresponding either to the flow rate of the cluster nozzle configuration or half of the flow rate of this configuration. Two injection pressures, 600 bar and 1100 bar, were used to investigate all nozzles. This investigation completes the characterization of sprays from the cluster nozzles presented in an earlier work. Findings obtained therein were used to choose the measurement procedure for the present investigation and also to determine the spray width in order to obtain the spray angle.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

2011-09-11
2011-24-0138
Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Technical Paper

A New CFD Approach for Assessment of Swirl Flow Pattern in HSDI Diesel Engines

2010-09-28
2010-32-0037
The fulfillment of the aggravated demands on future small-size High-Speed Direct Injection (HSDI) Diesel engines requires next to the optimization of the injection system and the combustion chamber also the generation of an optimal in-cylinder swirl charge motion. To evaluate different port concepts for modern HSDI Diesel engines, usually quantities as the in-cylinder swirl ratio and the flow coefficient are determined, which are measured on a steady-state flow test bench. It has been shown that different valve lift strategies nominally lead to similar swirl levels. However, significant differences in combustion behavior and engine-out emissions give rise to the assumption that local differences in the in-cylinder flow structure caused by different valve lift strategies have noticeable impact. In this study an additional criterion, the homogeneity of the swirl flow, is introduced and a new approach for a quantitative assessment of swirl flow pattern is presented.
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Technical Paper

Application of Vehicle Interior Noise Simulation (VINS) for NVH Analysis of a Passenger Car

2005-05-16
2005-01-2514
The overall perception of a vehicle's quality is significantly influenced by its interior noise characteristics. Therefore, it is important to strike a balance between “pleasant” and “dynamic” sound that fits the customer requirements with respect to vehicle brand and class [1]. Typically, a significant share of the interior vehicle noise is transferred through structure-borne paths. Hence, the powertrain mounting system plays an important role in designing the interior noise. This paper describes an application of the method of vehicle interior noise simulation (VINS) to achieve a characteristic interior sound. This approach is based on separate measurements (or calculations) of excitations and transfer functions and subsequent calculation of the interior noise in the time domain.
Technical Paper

Modern Gear Train Simulation Process for the Virtual Engine and Transmission Development

2006-04-03
2006-01-0585
Current simulation tools for the investigation of the dynamic system response as well as for the component stresses on the basis of multi-body and finite-element techniques are integral part of today's powertrain development efforts. These tools are typical used for the analysis and optimization of shafts, clutches, chain/belt drives, bearings, levers, brackets, housings and many other components. An exception is made by gears which today are still frequently investigated by the help of semi-empirical methods based on DIN, ISO, AGMA and the specific knowledge base of well experienced developers. The main difficulty is that the gears are rolling off via large contact surfaces with complex nonlinear mechanical contact properties. Within the scope of research work FEV developed a new method for the analysis and optimization of gear drives based on comercial multi-body and finite-element software platforms.
Technical Paper

Influence of the Nozzle Spray Angle on Pollutant Formation and Combustion Efficiency for a PCCI Diesel Engine

2009-04-20
2009-01-1445
In Common-Rail DI Diesel Engines, a low combustion temperature process is considered as one of the most important possibilities to achieve very small emissions and optimum performance. To reduce NOx and Soot strongly, it is necessary to achieve a homogenization of the mixture in order to avoid the higher local temperatures which are responsible for the NOx formation [1]. Through the homogenization it is also possible to obtain a stoichiometric air-fuel ratio in order to significantly reduce the Soot emissions. One way to achieve this homogeneous condition is to start injection very early together with the use of higher EGR rates. The direct effect of these conditions cause a longer ignition delay (this is the time between start of the injection and auto-ignition during physical and chemical sub processes such as fuel atomization, evaporation, fuel air mixing and chemical pre-reactions take place) so that the mixture formation has more time to achieve a homogeneous state.
Technical Paper

Downsizing of Diesel Engines: 3-Cylinder / 4-Cylinder

2000-03-06
2000-01-0990
Due to the future application of combustion engines in small and hybrid vehicles, the demand for high efficiency with low mass and compact engine design is of prime importance. The diesel engine, with its outstanding thermal efficiency, is a well suited candidate for such applications. In order to realize these targets, future diesel engines will need to have increasingly higher specific output combined with increased power to weight ratios. This is therefore driving the need for new designs of 3 and/or 4 cylinder, small bore engines of low displacement, sub 1.5l. Recent work on combustion development, has shown that combustion systems, ports, valves and injector sizes are available for bore sizes down to 65 mm.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Droplet Velocity Measurements in Direct-Injection Diesel Sprays Under High-Pressure and High-Temperature Conditions by Laser Flow Tagging

2008-04-14
2008-01-0944
The droplet velocity is an important parameter for breakup, evaporation, and combustion of Diesel sprays, but it is very difficult to measure it by widely used laser diagnostic techniques like PDA, PIV and LCV under realistic high-pressure and high-temperature conditions. This is basically caused by laser beam steering and multiple scattering of light due to very high droplet densities, in particular close to the nozzle. It was demonstrated recently, that these problems can be greatly reduced by the laser flow tagging (LFT) technique. For this purpose, the model fuel is doped with a phosphorescent tracer. A number of droplet groups within the spray are tagged by illuminating them with focused beams of a pulsed laser, and their velocities are measured by recording the phosphorescence twice after each laser pulse using a double-frame ICCD.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

A New Transient Elastohydrodynamic (EHD) Bearing Model Linkable to ADAMS®

2001-03-05
2001-01-1075
The new elastohydrodynamic (EHD) code developed by FEV Motorentechnik GmbH, Aachen, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Using this tool design targets can be achieved with higher confidence levels. The developed code may be linked to commercial multibody system (MBS) codes such as ADAMS® while simultaneously representing the important characteristics occurring in transiently loaded journal bearings including elastic deformation, cavitation, and non-constant speed. Static deviations from ideal journal and bearing shell shapes caused by manufacturing and assembly processes can be considered and are substantially important in the evaluation of journal bearings. Presented is an economic bearing model approach which includes elastic bearing deformations.
Technical Paper

A New TEHD Approach for Sophisticated Simulation of Journal Bearings

2001-10-01
2001-01-3367
The new Thermo-Elasto-Hydro-Dynamic (TEHD) code developed by FEV, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Advanced analysis tools are evaluated by their performance as well as by their ease of use. High performance means on the one hand: taking into account all the important characteristics, like bearing elasticity or cavitation effects, to mention only some major parameters for modern journal bearing analysis. On the other hand: an economic run-time behavior must be a key feature concerning usability of the TEHD-demands for daily development praxis. Ease of use means also, that the TEHD model can easily be used as a plug-in routine of an already existing software package that is well known to the development departments.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of powertrain test benches in research and development is strongly influenced by the state of “health” of the functional test object. Hence, the use of Early Damage Detection Systems (EDDS) with Unit Under Test (UUT) monitoring is becoming increasingly popular. An EDDS should primarily avoid total loss of the test object and ensure that damaged parts are not completely destroyed, and can still be inspected. Therefore, any abnormality from the standard test object behavior, such as an exceeding of predefined limits, must be recognized at an early testing time, and must lead to a shutdown of the test bench operation. With sensors mounted on the test object, it is possible to isolate the damage cause in the event of its detection. Advanced EDDS configurations also optimize the predefined limits by learning new shutdown values according to the test object behavior within a very short time.
Journal Article

A Sectoral Approach to Modelling Wall Heat Transfer in Exhaust Ports and Manifolds for Turbocharged Gasoline Engines

2016-04-05
2016-01-0202
A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
Technical Paper

Specific Durability Testing with FEV Master Program

2010-04-12
2010-01-0922
During the past years, there has been an increasing tendency to seriously question and break up old and ingrained structures in combustion engine testing. The reason for this is the continuously increasing number of engine and vehicle variants and a variety of applications resulting from it, which significantly push up development costs and times when carrying out the classical testing patterns. The following article by FEV Motorentechnik GmbH introduces a comprehensive test methodology for purposeful endurance testing of modern drive units (in particular from the fields of passenger cars and commercial vehicles). The procedure and the testing philosophy are explained in detail, illustrated by a concrete development example.
X