Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Experimental Investigation of UAS Rotors and Ice Protection Systems in Appendix C Icing Conditions

2023-06-15
2023-01-1380
If an Unmanned Aerial Systems (UAS) encounters icing conditions during flight, those conditions might result in degraded aerodynamic performance of the overall UAS. If the UAS is not reacting appropriately, safety critical situations can quickly arise. Thereby, the rotors, respectively the propellers of the UAS are especially susceptible due to the increased airflow through their domain and the corresponding higher impingement rate of supercooled water droplets. In many cases, the UAS cannot be properly operated if the rotors are not fully functional, as they are a vital component. The FFG/BMK funded research and development project “All-weather Drone” is investigating the icing phenomenon on UAS rotors for a 25 kg maximum take-off weight (MTOW) multirotor UAS and evaluating the feasibility of possible technical ice detection and anti-/de-icing solutions.
Technical Paper

Experimental Investigation of a CRM65 Wingtip Mockup under Appendix C and Appendix O Icing Conditions

2023-06-15
2023-01-1386
Research institutes and companies are currently working on 3D numerical icing tools for the prediction of ice shapes on an international level. Due to the highly complex flow situation, the prediction of ice shapes on three-dimensional surfaces represents a challenge. An essential component for the development and subsequent validation of 3D ice accretion codes are detailed experimental data from ice shapes accreted on relevant geometries, like wings of a passenger aircraft for example. As part of the Republic of Austria funded research project JOICE, a mockup of a wingtip, based on the National Aeronautics and Space Administration common research model CRM65 was designed and manufactured. For further detailed investigation of electro-thermal de-icing systems, various heaters and thermocouples were included.
Technical Paper

Comparison of Numerical Simulations with Experimental Data for an Electrothermal Ice Protection System in Appendix O Conditions

2023-06-15
2023-01-1396
This paper provides information on the comparison of numerical simulations with experimental data for an electrothermal ice protection system with a focus on Appendix O [1] Freezing Drizzle (FZDZ) and Freezing Rain (FZRA) conditions. The experimental data is based on a test campaign with a 2D NACA23012 wing section in the RTA Icing Wind Tunnel in Vienna. 22 icing runs (all either unheated or in anti-ice mode) were performed in total and all residual ice shapes were documented by means of high-resolution 3D scanning. Unheated FZDZ and FZRA reference as well as heated cases with different heater configurations are presented. The experimental results are compared to numerical predictions from two different icing codes from AeroTex GmbH (ATX) and the University of Applied Sciences FH JOANNEUM (FHJ) in Graz. The current capabilities of the codes were assessed in detail and regions for improvement were identified.
Technical Paper

Time Resolved 3D Scanning of Ice Geometries in a Large Climatic Wind Tunnel

2023-06-15
2023-01-1414
In the scope of development or certification processes for the flight under known icing conditions, aircraft have to be tested in icing wind tunnels under relevant conditions. The documentation of these tests has to be performed at a high level of detail. The generated data is used to prove the functionality of the systems, to develop new systems and for scientific purposes, for example the development or validation of numerical tools for ice accretion simulation. One way of documenting the resulting ice geometry is the application of an optical 3D scanning or reconstruction method. This work investigates and reviews optical methods for three-dimensional reconstructions of objects and the application of these methods in ice accretion documentation with respect to their potential of time resolved measurement. Laboratory tests are performed for time-of flight reconstruction of ice geometries and the application of optical photogrammetry with and without multi-light approach.
Technical Paper

Validation of Ice Roughness Analysis Based on 3D-Scanning and Self-Organizing Maps

2019-06-10
2019-01-1992
3D-scanning is an established method for the documentation of wing ice accretion. The generated 3D-data can be used to determine specific parameters of interest, like the local ice-thickness, or the surface ice roughness. The surface roughness has significant impact on the heat transfer, and therefore on the icing process itself. Insights into the effects of surface roughness on the ice accretion and the correlated aerodynamical effects contribute to the improvement of icing codes. In this paper, the surface roughness of various test specimens is determined by performing a self-organizing maps (SOM) approach for roughness point cloud analysis on data generated with a 3D-scanner. A validation of the SOM method is achieved by means of focus variation microscopy and a mathematical proof of the utilized SOM algorithm. Different scanning systems from several manufacturers are used to determine the surface of different sandpapers.
Technical Paper

A Refined In-Flight Icing Model and its Numerical Implementation

2019-06-10
2019-01-1937
A refined in-flight icing model is proposed whose primary focus lies on an improved prediction of the runback dynamics. The most significant capabilities/properties of the model are: Incorporation of surface tension and wetting effects in the runback model Fully transient treatment of the ice accretion/depletion process and the runback flow Treatment of unsteady heat transfer in the runback layer, the accreted ice layer and the underlying substrate as well as phase transitions solid/liquid in the ice layer Strict mass- and enthalpy-conservative growth/depletion of the ice layer (this is achieved by a specially designed mesh deformation algorithm) An essential part of the paper is devoted to the treatment of surface tension and wetting effects: These effects result from disjoining pressure contributions to the pressure terms in the runback continuity equation, i.e., these effects are inherent properties of the simulated runback dynamics.
Technical Paper

Extension of a 2D Algorithm for Catch Efficiency Calculation to Three Dimensions

2019-06-10
2019-01-2013
Accurate calculation of the catch efficiency β is of paramount importance for any ice accretion calculation since β is the most important factor in determining the mass of ice accretion. A new scheme has been proposed recently in [1] for accurately calculating β on a discretized two-dimensional geometry based on the results of a Lagrangian droplet trajectory integrator (start and impact conditions). This paper proposes an extension to the algorithm in Ref. [1], which is applicable to three-dimensional surfaces with arbitrary surface discretization. The 3D algorithm maintains the positive attributes of the original 2D algorithm, namely mass conservation of the impinging water, capability to deal with overlapping impingement regions and with crossing trajectories, computational efficiency of the algorithm, and low number of trajectories required to reach good accuracy in catch efficiency.
Journal Article

Aerodynamic Assessment of Complex 3D Ice Shape Replications

2019-06-10
2019-01-1936
This work introduces an approach allowing the detailed replication of ice shapes generated in icing wind tunnels, with a special focus on complex and strongly varying ice structures, e.g., ice feathers or residual ice stemming from incomplete removal of accreted ice by ice protection systems. 3D-scans are used as an input for the manufacturing process of the ice shape replica. The manufacturing approach itself is based on additive techniques using semi-flexible materials. In contrast to existing replication techniques, this approach allows also clean areas between ice-covered surface locations. In the present paper, a quality assessment based on the comparison of the lift coefficients of real and corresponding artificial ice shapes is presented.
Technical Paper

Numerical Simulation of In-flight Icing by Water Droplets with Elevated Temperature

2023-06-15
2023-01-1477
When conducting experiments in icing wind tunnels (IWTs), a significant question is to what extent the temperature of the water droplets generated by the spray system has converged to the static air temperature when the droplets impinge on the test object. This is a particularly important issue for large droplets, since the cooling rate of droplets decreases sharply with increasing diameter. In this paper, on the one hand, realistic droplet temperature distributions in the measurement section of the Rail Tec Arsenal IWT (located in Vienna) are computed by means of a numerical code which tracks the paths of the droplets from the spraying nozzle to the measurement section and simultaneously calculates their cooling rates. On the other hand, numerical icing simulations are performed to investigate to what extent the deviation of the droplet temperature from static air temperature influences icing and thermal anti-icing processes.
X