Refine Your Search

Topic

Author

Search Results

Journal Article

The Development of an Highly Modular Designed Zero-Dimensional Engine Process Calculation Code

2010-04-12
2010-01-0149
The main objective of the FVV-project “Cylinder Module” was the development of a profoundly modular designed concept for object-oriented modeling of in-cylinder processes of internal combustion engines. It was designed in such a way, that it can either be used as a stand-alone real working-process calculation tool or in tools for whole vehicle simulations. It is possible to run the “Cylinder Module”-code inside the FVV-“GPA”-software for transient vehicle and driving cycle simulations and it is possible to use the graphical user interface “ATMOS” of the “GPA”-project. The code can also be used as a user-subroutine in 1-D-flow simulation codes. Much effort was spent on the requirements of flexibility and expandability in order to be well prepared to cope with the diversity of both today's and future tasks. The code is freely available for members of the German Research Association for Combustion Engines (FVV).
Journal Article

Integrated Numerical and Experimental Approach to Determine the Cooling Air Mass Flow in Different Vehicle Development Stages

2010-04-12
2010-01-0287
This paper presents an integrated numerical and experimental approach to take best possible advantage of the common development tools at hand (1D, CFD and wind tunnel) to determine the cooling air mass flow at the different vehicle development stages. 1D tools can be used early in development when neither 3D data nor wind tunnel models with detailed underhood flow are available. A problem that has to be resolved is the dependency on input data. In particular, the pressure coefficients on the outer surface (i.e. at the air inlet and outlet region) and the pressure loss data of single components are of great importance since the amount of cooling air flow is directly linked to these variables. The pressure coefficients at the air inlet and outlet are not only a function of vehicle configuration but also of driving velocity and fan operation. Both, static and total pressure coefficient, yield different advantages and disadvantages and can therefore both be used as boundary conditions.
Journal Article

3D-CFD Virtual Engine Test Bench of a 1.6 Liter Turbo-Charged GDI-Race-Engine with Focus on Fuel Injection

2013-09-08
2013-24-0149
In the last years motorsport is facing a technical revolution concerning the engine technology in every category, from touring car championships up to the F1. The strategy of the car manufacturers to bring motorsport engine technology closer to mass production one (e.g. turbo-charging, downsizing and direct injection) allows both to reduce development costs and to create a better image and technology transfer by linking motorsport activities to the daily business. Under these requirements the so-called Global Race Engine (GRE) concept has been introduced, giving the possibility to use one unique engine platform concept as basis for different engine specifications and racing categories. In order to optimize the performance of this kind of engines, especially due to the highly complex mixture formation mechanisms related to the direct injection, it is nowadays mandatory to resort to reliable 3D-CFD simulations.
Technical Paper

LPG and Prechamber as Enabler for Highly Performant and Efficient Combustion Processes Under Stoichiometric Conditions

2021-09-05
2021-24-0032
The European Union has defined legally binding CO2-fleet targets for new cars until 2030. Therefore, improvement of fuel economy and carbon dioxide emission reduction is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future CO2 targets without further improvement in combustion efficiency, using low carbon fuels (LCF), and at least mild electrification. This paper demonstrates a highly efficient and performant combustion engine concept with a passive pre-chamber spark plug, operating at stoichiometric conditions and powered with liquefied petroleum gas (LPG). Even from fossil origin, LPG features many advantages such as low carbon/hydrogen ratio, low price and broad availability. In future, it can be produced from renewables and it is in liquid state under relatively low pressures, allowing the use of conventional injection and fuel supply components.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Technical Paper

Discretization and Heat Transfer Calculation of Engine Water Jackets in 1D-Simulation

2020-04-14
2020-01-1349
The industry is working intensively on the precision of thermal management. By using complex thermal management strategies, it is possible to make engine heat distribution more accurate and dynamic, thereby increasing efficiency. Significant efforts are made to improve the cooling efficiency of the engine water jacket by using 3D CFD. As well, 1D simulation plays a significant role in the design and analysis of the cooling system, especially for considering transient behaviour of the engine. In this work, a practice-oriented universal method for creating a 1D water jacket model is presented. The focus is on the discretization strategy of 3D geometry and the calculation of heat transfer using Nusselt correlations. The basis and reference are 3D CFD simulations of the water jacket. Guidelines for the water jacket discretization are proposed. The heat transfer calculation in the 1D-templates is based on Nusselt-correlations (Nu = Nu(Re, Pr)), which are derived from 3D CFD simulations.
Journal Article

Open Grille DrivAer Model - First Results

2015-04-14
2015-01-1553
Cooling air flow is an important factor when it comes to vehicle performance and operating safety. In addition, it is closely linked to vehicle aerodynamics. In recent years more and more effort is being spent to optimize the losses generated by the flow through the vehicle. Grille shutters, better sealing and ducting are only some examples for innovations in this field of work, resulting in a lower contribution of the cooling air flow to overall drag. When investigating those effects, both experiments and numerical simulations are commonly used in the automotive environment. Still, when comparing the results from both methods, differences in the effect of cooling air flow can often be observed. To better understand the effects of cooling air flow, the ECARA Subgroup CFD decided to establish a common design for a generic open source vehicle model with a detailed underhood compartment to lay the foundation for a common investigation model.
Journal Article

Active Crosswind Generation and Its Effect on the Unsteady Aerodynamic Vehicle Properties Determined in an Open Jet Wind Tunnel

2018-04-03
2018-01-0722
In this article the unsteady aerodynamic properties of a 25% scale DrivAer notchback model as well as the influence of the wind tunnel environment on the resulting unsteady aerodynamic forces and moments under crosswind excitation are investigated using experimental and corresponding numerical methods. Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) swing® (side wind generator) is used to reproduce the essential properties of natural stochastic crosswind in the open jet test section of the Institute for Internal Combustion Engines and Automotive Engineering (IVK) model scale wind tunnel (MWK). The results show that the test environment of an open jet wind tunnel alters the amplitudes of side force and yaw moment under crosswind excitation when compared to an ideal environment neglecting wind tunnel interference effects.
Journal Article

The Effects of Cooling Air on the Flow Field around a Vehicle

2016-04-05
2016-01-1603
Cooling air flow is an important factor when it comes to vehicle performance and operating safety. In addition, it is closely linked to vehicle aerodynamics. In recent years more and more effort is being spent to optimize the losses generated by the flow through the vehicle. Grille shutters, better sealing and ducting are only some examples for innovations in this field of work, resulting in a lower contribution of the cooling air flow to overall drag. But cooling air not only affects the internal flow of the vehicle but also changes the flow around it. This paper will show changes in the flow field around the generic DrivAer model resulting from cooling air flow, especially in the wake behind the car and in the region around the front wheels. The results were gathered using PIV measurements, multi-hole-probe measurements and pitot tube measurements in the 1:4 model scale wind tunnel of IVK University of Stuttgart.
Journal Article

Investigation of Aerodynamic Drag in Turbulent Flow Conditions

2016-04-05
2016-01-1605
In this paper the influence of different turbulent flow conditions on the aerodynamic drag of a quarter scale model with notchback and estate back rear ends is investigated. FKFS swing® (Side Wind Generator) is used to generate a turbulent flow field in the test section of the IVK model scale wind tunnel. In order to investigate the increase in drag with increasing yaw, a steady state yaw sweep is performed for both vehicle models. The shape of the drag curves vary for each vehicle model. The notchback model shows a more pronounced drag minimum at 0° yaw angle and experiences a more severe increase in drag at increasing yaw when compared to the estate back model. Unsteady time averaged aerodynamic drag values are obtained at two flow situations with different turbulent length scales, turbulence intensities, and yaw angle amplitudes. While the first one is representing light wind, the second one is recreating the presence of strong gusty wind.
Journal Article

Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock

2017-09-04
2017-24-0001
The most significant operation limit prohibiting the further reduction of the CO2 emissions of gasoline engines is the occurrence of knock. Thus, being able to predict the incidence of this phenomenon is of vital importance for the engine process simulation - a tool widely used in the engine development. Common knock models in the 0D/1D simulation are based on the calculation of a pre-reaction state of the unburnt mixture (also called knock integral), which is a simplified approach for modeling the progress of the chemical reactions in the end gas where knock occurs. Simulations of thousands of knocking single working cycles with a model representing the Entrainment model’s unburnt zone were performed using a detailed chemical reaction mechanism. The investigations showed that, at specific boundary conditions, the auto-ignition of the unburnt mixture resulting in knock happens in two stages.
Technical Paper

A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection

2020-04-14
2020-01-0574
As a result of the R&D focus being shifted from internal combustion engines to electrified powertrains, resources for the development of internal combustion engines are restricted more and more. With that, the importance of highly efficient engine development tools is increased. In this context, 0D/1D engine simulation offers the advantage of low computational effort and fast engine model set-up. To ensure a high predictive ability of the engine simulation, a reliable burn rate model is needed. Considering the increasing interest in alternative fuels, the aspect of predicting the fuel influence on combustion is of special importance. To reach these targets, the change of engine combustion characteristics with changing fuels and changing air-fuel-ratios were investigated systematically in a first step. For this purpose, engine test bed data were compared with expected fuel-dependent flame wrinkling trends based on Markstein/Lewis number theory.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Journal Article

A Review of Some Cooling Air Flow Measurement Techniques for Model Scale, Full Scale and CFD

2013-04-08
2013-01-0598
Each component of a drive train generates waste heat due to its limited efficiency. This waste heat is usually released to an air flow guided through one or more heat exchangers. So, the realized cooling air volume flow is one important characteristic value during the vehicle development process. This paper presents some of the available techniques for the measurement of cooling air volume flow in the vehicle during the different stages of an aerodynamic development process in model scale and full scale. Additionally, it provides suggestions when comparing these experimental values to CFD results.
Journal Article

A New Approach for Modeling Cycle-to-Cycle Variations within the Framework of a Real Working-Process Simulation

2013-04-08
2013-01-1315
For a reliable and accurate simulation of SI engines reproduction of their operation limits (misfiring and knock limit) and in this context the knowledge of cyclic combustion variations and their influence on knock simulation are mandatory. For this purpose in this paper a real working-process simulation approach for the ability to predict cycle-to-cycle variations (ccv) of gasoline engines is proposed. An extensive measurement data base of four different test engines applying various operation strategies was provided in order to gain a better understanding of the physical background of the cyclic variations. So the ccv initiated by dilution strategies (internal EGR, lean operation), the ccv at full load and at the knock limit could be investigated in detail. Finally, the model was validated on the basis of three further engines which were not part of the actual development process.
Journal Article

Virtual Full Engine Development: 3D-CFD Simulations of Turbocharged Engines under Transient Load Conditions

2018-04-03
2018-01-0170
The simulation of transient engine behavior has gained importance mainly due to stringent emission limits, measured under real driving conditions and the concurrently demanded vehicle performance. This is especially true for turbocharged engines, as the coupling of the combustion engine and the turbocharger forms a complex system in which the components influence each other remarkably causing, for example, the well-known turbo lag. Because of this strong interaction, during a transient load case, the components should not be analyzed separately since they mutually determine their boundary conditions. Three-dimensional computational fluid dynamics (3D-CFD) simulations of full engines in stationary operating points have become practicable several years ago and will remain a valuable tool in virtual engine development; however, the next logical step is to extend this approach into the transient domain.
Journal Article

Influence of Binary CNG Substitute Composition on the Prediction of Burn Rate, Engine Knock and Cycle-to-Cycle Variations

2017-03-28
2017-01-0518
Since 0D/1D-simulations of natural gas spark ignition engines use model theories similar to gasoline engines, the impact of changing fuel characteristics needs to be taken into consideration in order to obtain results of higher quality. For this goal, this paper proposes some approaches that consider the influence of binary fuel mixtures such as methane with up to 40 mol-% of ethane, propane, n-butane or hydrogen on laminar flame speed and knock behavior. To quantify these influences, reaction kinetics calculations are carried out in a wide range of the engine operation conditions. Obtained results are used to update and extend existing sub-models. The model quality is validated by comparing measured burn rates with simulation results. The benefit of the new sub-models are utilized by predicting the influence the fuel takes on engine operating limits in terms of knocking and lean misfire limits, the latter being determined by using a cycle-to-cycle variation model.
Journal Article

Quasi-Dimensional Modeling of CI-Combustion with Multiple Pilot- and Post Injections

2010-04-12
2010-01-0150
A new phenomenological CI combustion model was developed. Within this model the given injection rate may contain an arbitrary number of injections during one cycle. Another target was a short computation time of one second per cycle on average. The new approach should also have the ability to simulate a wide engine spectrum from passenger-car engines through to marine engines. The ignition delay is calculated separately for each single injection. In this way the model depicts the influence of pilot injections on the ignition delay of proximate injections. Each pilot injection is modeled as a single air-fuel mixture cloud with air entrainment. The burn rate of the pilot injection is modeled as a function of flame propagation and of the current local excess air ratio. If the local excess air ratio becomes too lean the pilot combustion stops or does not start at all. Main and post-injections are calculated by means of a slice approach.
Journal Article

Unsteady Aerodynamic Properties of a Vehicle Model and their Effect on Driver and Vehicle under Side Wind Conditions

2011-04-12
2011-01-0154
In this paper the effect of aerodynamic modifications that influence the unsteady aerodynamic properties of a vehicle on the response of the closed loop system driver-vehicle under side wind conditions is investigated. In today's aerodynamic optimization the side wind sensitivity of a vehicle is determined from steady state values measured in the wind tunnel. There, the vehicle is rotated with respect to the wind tunnel flow to create an angle of attack. In this approach however, the gustiness that is inherent in natural wind is not reproduced. Further, unsteady forces and moments acting on the vehicle are not measured due to the limited dynamic response of the commonly used wind tunnel balances. Therefore, a new method is introduced, overcoming the shortcomings of the current steady state approach. The method consists of the reproduction of the properties of natural stochastic crosswind that are essential for the determination of the side wind sensitivity of a vehicle.
X