Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Full Vehicle Simulation for Series Hybrid Vehicles

2003-06-23
2003-01-2301
Delphi and the National Renewable Energy Laboratory (NREL) collaborated to develop a simulation code to model the mechanical and electrical architectures of a series hybrid vehicle simultaneously. This co-simulation code is part of the larger ADVISOR® product created by NREL and diverse partners. Simulation of the macro power flow in a series hybrid vehicle requires both the mechanical drivetrain and the entire electrical architecture. It is desirable to solve the electrical network equations in an environment designed to comprehend such a network and solve the equations in terms of current and voltage. The electrical architecture for the series hybrid vehicle has been modeled in Saber™ to achieve these goals. This electrical architecture includes not only the high-voltage battery, generator, and traction motor, but also the normal low-voltage bus (14V) with loads common to all vehicles.
Technical Paper

Co-Simulation of Electrical and Propulsion Systems

2001-08-20
2001-01-2533
One of the challenges of analyzing vehicular electrical systems is the co-dependence of the electrical system and the propulsion system. Even in traditional vehicles where the electrical power budget is very low, the electrical system analysis for macro power utilization over a drive cycle requires knowledge of the generator shaft rpm profile during the drive cycle. This co-dependence increases as the electrical power budget increases, and the integration of the two systems becomes complete when hybridization is chosen. Last year at this conference, the authors presented a paper entitled “Dual Voltage Electrical System Simulations.” That paper established validation for a suite of electrical component models and demonstrated the ability to predict system performance both on a macro power flow (entire drive cycle) level and a detailed transient-event level. The techniques were applicable to 12V, 42V, dual voltage, and/or elevated voltage systems.
X