Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Potential for Achieving Low Hydrocarbon and NOx Exhaust Emissions from Large Light-Duty Gasoline Vehicles

2007-04-16
2007-01-1261
Two large, heavy light-duty gasoline vehicles (2004 model year Ford F-150 with a 5.4 liter V8 and GMC Yukon Denali with a 6.0 liter V8) were baselined for emission performance over the FTP driving cycle in their stock configurations. Advanced emission systems were designed for both vehicles employing advanced three-way catalysts, high cell density ceramic substrates, and advanced exhaust system components. These advanced emission systems were integrated on the test vehicles and characterized for low mileage emission performance on the FTP cycle using the vehicle's stock engine calibration and, in the case of the Denali, after modifying the vehicle's stock engine calibration for improved cold-start and hot-start emission performance.
Technical Paper

The Use of Radioactive Tracer Technology to Measure Real-Time Wear in Engines and Other Mechanical Systems

2007-04-16
2007-01-1437
Radioactive tracer technology (RATT™) is an important tool for measuring real-time wear in operating engines and other mechanical systems. The use of this technology provides important wear information that is not available by other, more conventional wear measurement methods. The technology has advanced to the point where several components can be interrogated simultaneously, and new methods have extended the method to materials that are normally not amenable to radioactive tracer evaluation. In addition, sensitivity has increased so that the onset of wear can be detected long before practical with non-tracer methods. This improves the ability to measure and determine cause and effect relationships, thus providing a better understanding of wear responses to specific operating conditions and to changes in operating conditions. This paper reviews the radioactive tracer process and recent improvements that have extended its reach in both automotive and non-automotive applications.
Technical Paper

Investigation of Alternative Combustion Crossing Stoichiometric Air Fuel Ratio for Clean Diesels

2007-07-23
2007-01-1840
Alternative combustion crossing stoichiometric air fuel ratio was investigated to utilize a 4-way catalyst system with LNT (lean NOx trap). The chemical mechanism of restricting soot formation reactions with low combustion temperature was combined with the physical mechanism of reducing smoke by lowering local equivalence ratio to enable low smoke rich and near rich combustion. A new combustion chamber for spatially and timely mixture formation phasing was developed to combine the two mechanisms and allow smooth EGR changing over a wide load range. Through this investigation, rich and near rich combustion to effectively utilize a 4-way catalyst system was realized. In addition, conditions suitable for LNT sulfur regeneration were realized from light to medium load.
Technical Paper

Engine Crankshaft Position Tracking Algorithms Applicable for Given Arbitrary Cam- and Crank-Shaft Position Signal Patterns

2007-04-16
2007-01-1597
This paper describes algorithms that can recognize and track the engine crankshaft position for arbitrary cam- and crank-shaft tooth wheel patterns in both steady-state and transient operating conditions. Crankshaft position tracking resolution is adjustable to accommodate different application requirements. The instantaneous crankshaft position information provided by the position tracking module form the basis for crankshaft angle domain (CAD) engine control and measurement functions such as precise injection / ignition controls and on-line cylinder pressure CAD analyses. The algorithms described make reconfiguration of the tracking module for different and arbitrary cam- and crank-shaft tooth wheel patterns very easy, which is valuable especially for prototyping engine control systems. The effectiveness of the algorithms is shown using test engines with different cam and crank signal patterns.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

Analytical and Experimental Techniques in Solving the Plastic Intake Manifold NVH

2001-04-30
2001-01-1544
The intent of this paper is to summarize the work of the V8 power plant intake manifold radiated noise study. In a particular V8 engine application, customer satisfaction feedback provided observations of existing unpleasant noise at the driver's ear. A comprehensive analysis of customer data indicated that a range from 500 to 800 Hz suggests a potential improvement in noise reduction at the driver's ear. In this study the noise source was determined using various accelerometers located throughout the valley of the engine and intake manifold. The overall surface velocity of the engine valley was ranked with respect to the overall surface velocity of the intake manifold. An intensity mapping technique was also used to determine the major component noise contribution. In order to validate the experimental findings, a series of analysis was also conducted. The analysis model included not only the plastic intake manifold, but also the whole powertrain.
Technical Paper

Impact of Lubricant Oil on Regulated Emissions of a Light-Duty Mercedes-Benz OM611 CIDI-Engine

2001-05-07
2001-01-1901
The Partnership for a New Generation Vehicle (PNGV) has identified the compression-ignition, direct-injection (CIDI) engine as a promising technology in meeting the PNGV goal of 80 miles per gallon for a prototype mid-size sedan by 2004. Challenges remain in reducing the emission levels of the CIDI-engine to meet future emission standards. The objective of this project was to perform an initial screening of crank case lubricant contribution to regulated engine-out emissions, particularly when low particulate forming diesel fuel formulations are used. The test engine was the Mercedes-Benz OM611, the test oils were a mineral SAE 5W30, a synthetic (PAO based) SAE 5W30, and a synthetic (PAO based) SAE 15W50, and the test fuels were a California-like certification fuel and an alternative oxygenated diesel fuel.
Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

2001-04-30
2001-01-1561
The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
Technical Paper

A New Method for Calculating Fluctuation Strength in Electric Motors

2001-04-30
2001-01-1588
In assessing the sound quality of electric motors (e.g., seat, mirror, and adjustable pedal motors), the sensation of Fluctuation Strength - a measure of intensity or frequency variation - has become important. For electric motors, it is typically caused by variation in the load, creating frequency modulation in the sound. An existing method for calculating Fluctuation Strength proved useful initially, but more extensive testing identified unacceptable performance. There were unacceptable levels of both false positives and false negatives. A new method is presented, which shows improved correlation with perceived fluctuation in sounds. Comparisons are made to the previous method and improvement is shown through examples of objective-subjective correlation for both seat motor sounds and adjustable pedal motor sounds. The new method is also shown to match subjective data from which the original measure of Fluctuation Strength was derived.
Technical Paper

Analysis of Instabilities and Power Flow in Brake Systems with Coupled Rotor Modes

2001-04-30
2001-01-1602
Recent investigations by others have indicated that the dynamic response of automotive brake rotors in the squeal frequency range involves the classic flexural modes as well as in-plane motion. While the latter set creates primarily in-plane displacements, there is coupling to transverse displacements that might produce vibrational instabilities. This question is investigated here by analyzing a modal model that includes two modes of the rotor and two modes of the pad and caliper assembly. Coupling between in-plane and transverse displacements is explicitly controlled. Results from this model indicate that the coupling does create vibrational instabilities. The instabilities, whose frequencies are in the squeal range, are characterized by power flow through the transverse motion of the rotor.
Technical Paper

Engine Excitation Decomposition Methods and V Engine Results

2001-04-30
2001-01-1595
Engine excitation forces have been studied in the past using one of two methods; a lumped sum or a totally distributed approach. The lumped sum approach gives the well-understood engine inherent unbalance and the totally distributed approach is used in engine CAE models to determine the overall engine response. The approach that will be described in this paper identifies an intermediate level of sophistication. The methodology implemented considers single cylinder forces on the engine block, piston side thrust and main bearing forces, and decomposes them into their order content. The forces are then phased and geometrically distributed appropriately for each cylinder and then each order is analyzed relative to know distributions that are NVH concerns, V-block breathing, block side wall breathing, and block lateral and vertical bending.
Technical Paper

Finite element simulation of drive shaft in truck/SUV frontal crash

2001-06-04
2001-06-0106
Drive shaft modelling effects frontal crash finite element simulation. A 35 mph rigid barrier impact of a body on frame SUV with an one piece drive shaft and a unibody SUV with a two piece drive shaft have been studied and simulated using finite element analyses. In the model, the drive shaft can take significant load in frontal impact crash. Assumptions regarding the drive shaft model can change the predicted engine motion in the simulation. This change influences the rocker @ B-pillar deceleration. Two modelling methods have been investigated in this study considering both joint mechanisms and material failure in dynamic impact. Model parameters for joint behavior and failure should be determined from vehicle design information and component testing. A body on frame SUV FEA model has been used to validate the drive shaft modeling technique by comparing the simulation results with crash test data.
Technical Paper

Fuel Economy Benefit of Cylinder Deactivation - Sensitivity to Vehicle Application and Operating Constraints

2001-09-24
2001-01-3591
A Variable Displacement Engine (VDE) improves fuel economy by deactivating half the cylinders at light load. The actual fuel economy benefit attained in the vehicle depends on how often cylinders can be deactivated, which is a function of test cycle, engine size, and vehicle weight. In practice, cylinder deactivation will also be constrained by NVH (noise, vibration, and harshness). This paper presents fuel economy projections for VDE in several different engine and vehicle applications. Sensitivity to NVH considerations is quantified by calculating fuel economy with and without cylinder deactivation in various operating modes: idle, low engine speed, 1st and 2nd gear, and warm-up after cold start. The effects of lug limits and calibration hysteresis are also presented.
Technical Paper

Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels

2001-09-24
2001-01-3606
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain homogenous CAI (or HCCI) combustion in a 4-stroke engine. The fuels under investigation include three blends of Unleaded Gasoline, a 95 RON Primary Reference Fuel, Methanol, and Ethanol. This work concentrates on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation and their effect on the ignition timing, combustion rate and variability, Indicated thermal efficiency, and engine-out emissions such as NOx. Detailed maps are presented, defining how each of the measured variables changes over the entire CAI region. Results indicate that the alcohols have significantly higher tolerance to dilution than the hydrocarbon fuels tested. Also, variations in Gasoline blend have little effect on any of the combustion parameters measured.
Technical Paper

Research and Development of Controlled Auto-Ignition (CAI) Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine

2001-09-24
2001-01-3608
Controlled Auto-Ignition (CAI) combustion has been achieved in a production type 4-stroke multi-cylinder gasoline engine. The engine was based on a Ford 1.7L Zetec-SE 16V engine with a compression ratio of 10.3, using substantially standard components modified only in design dimensions to control the gas exchange process in order to significantly increase the trapped residuals. The engine was also equipped with Variable Cam Timing (VCT) on both the intake and exhaust camshafts. It was found that the largely increased trapped residuals alone were sufficient to achieve CAI in this engine and with VCT, a range of loads between 0.5 and 4 bar BMEP and engine speeds between 1000 and 3500 rpm were mapped for CAI fuel consumption and exhaust emissions. The measured CAI results were compared with those of Spark Ignition (SI) combustion in the same engine but with standard camshafts at the same speeds and loads.
Technical Paper

An Ultra-Light Thin Sliding Door Design - A Multi-Product Multi-Material Solution

2002-03-04
2002-01-0391
Sliding door designs are applied to rear side doors on vans and other large vehicles with a trend towards dual sliding doors with power operation. It is beneficial for the vehicle user to reduce the weight of and space occupied by these doors. Alcoa, in conjunction with Ford, has developed a multi-product, multi-material-based solution, which significantly reduces the cost of an aluminum sliding door and provides both consumer delight and stamping-assembly plant benefits. The design was successfully demonstrated through a concept readiness/technology demonstration program.
Technical Paper

Examination of the Corrosion Behavior of Creep-Resistant Magnesium Alloys in an Aqueous Environment

2007-04-16
2007-01-1023
An electrochemical testing protocol for assessing the intrinsic corrosion-resistance of creep-resistant magnesium alloys in aqueous environments, and effects of passivating surface films anticipated to develop in the presence of engine coolants is under development. This work reports progress in assessing the relative corrosion resistance of the base metals (AMC-SC1, MRI-202S, MRI-230D, AM50 and 99.98% Mg) in a common test environment, based on a near-neutral pH buffered saline solution, found to yield particularly stable values for the open-circuit or corrosion potential. This approach was found to provide a platform for the eventual assessment of the durability of certain passivating layers expected to develop during exposure of the magnesium alloys to aqueous coolants.
Technical Paper

Hybrid Powertrain with an Engine-Disconnecting Clutch

2002-03-04
2002-01-0930
Several types of hybrid-electric vehicles have been developed at Ford Research Laboratory. Among the parallel hybrid systems with a single electric motor, two types were studied. In the first type, the electric motor was attached directly to the crankshaft (mild hybrid) [1], to enable the engine start-stop and regeneration functions. In the second type (full hybrid) the electric motor was connected to the engine through the use of a clutch to allow electric launch of the vehicle and pure electric driving at low speeds. The full hybrid powertrain described in this paper uses a more powerful electric motor for enhanced regenerative braking and engine power assist. An engine-disconnecting clutch saves energy during both the electric propulsion and during vehicle braking. When the clutch is disengaged the engine is shut-off, which eliminates the energy otherwise spent on motoring the engine during electric propulsion.
Technical Paper

A New Approach to Improving Fuel Economy and Performance Prediction through Coupled Thermal Systems Simulation

2002-03-04
2002-01-1208
Vehicle designers make use of vehicle performance programs such as RAPTOR™ to predict the performance of concept vehicles over ranges of industry standard drive cycles. However, the accuracy of such predictions may be greatly influenced by factors requiring more specialist simulation capabilities. For example, fuel economy prediction will be heavily influenced by the performance of the engine cooling system and its impact on the vehicle's aerodynamic drag, and the load from the air-conditioning system. To improve the predictions, specialist simulation capabilities need to be applied to these aspects, and brought together with the vehicle performance calculations through co-simulation. This paper describes the approach used to enable this cosimulation and the benefits achieved by the vehicle designer.
Technical Paper

Laboratory Assessment of the Oxidation and Wear Performance Capabilities of Low Phosphorus Engine Oils

2001-09-24
2001-01-3541
Meeting upcoming stringent emission standards will require that exhaust gas catalyst systems become active very quickly, function at very high efficiencies and maintain those capabilities at high mileages. This means that contamination of the catalysts by engine oil derived poisons must be minimized. Phosphorus compounds, derived from the zinc dialkyldithio-phosphate (ZDTP) additives that provide antiwear and antioxidant activity, are a principal contaminant that can increase catalyst light off times and reduce catalyst efficiency. Therefore, reducing the concentration of, or eliminating, phosphorus in engine oils is desirable. Doing so, however, requires that oils be reformulated to ensure that wear protection will not be compromised and that oxidation stability will be maintained. To address these concerns, laboratory tests for evaluating oil oxidation and wear performance have been developed and used to evaluate developmental low phosphorus oils.
X