Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of an Al2O3/ZrO2-Composite High-Accuracy NOx Sensor

2010-04-12
2010-01-0041
In 1999, the first generation NOx sensor from NGK Spark Plug, Co., Ltd. was commercialized for use in gasoline LNT NOx after-treatment systems [ 1 ]. Since then, as emissions regulations and OBD requirements have become more stringent, the demand for a high-accuracy NOx sensor with fast light-off has increased, particularly for diesel after-treatment systems. To meet such market demands, NGK Spark Plug, Co., Ltd. has developed, in collaboration with Ford Motor Company, a second generation NOx sensor.
Technical Paper

Detection of Spark Knock Oscillations: Dependence on Combustion Temperature

1997-02-24
970038
The frequency of the pressure oscillations caused by spark knock depends on the temperature-dependent speed of sound in the combustion gases. Engine dynamometer tests showed a 6.5% (390 Hz) reduction in the knock fundamental frequency as the air/fuel ratio was swept from 13:1 to 20:1. Engine cycle simulation model predictions of maximum burned gas temperatures correlate well with the data. A robust knock detection system must be insensitive to the range of burned gas temperature (frequency of pressure oscillations) that will be encountered with a particular engine control system operating under the expected range of fuels and environmental conditions.
Technical Paper

Spectrogram Analysis of Accelerometer-Based Spark Knock Detection Waveforms

1997-05-20
972020
Spark knock pressure oscillations can be detected by a cylinder pressure transducer or by an accelerometer mounted on the engine block. Accelerometer-based detection is lower cost but is affected by extraneous mechanical vibrations and the frequency response of the engine block and accelerometer. The knock oscillation frequency changes during the expansion stroke because the chamber geometry is changing due to the piston motion and the burned gases are cooling. Spectrogram analysis shows the time-dependent frequency content of the pressure and acceleration signals, revealing characteristic signatures of knock and mechanical vibrations. Illustrative spectrograms are presented which yield physical insight into accelerometer-based knock detection.
X