Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Viscous Fan Drive Model for Robust Cooling Air Flow Simulation

2007-04-16
2007-01-0595
One Dimensional models for front end air flows through the cooling system package are very useful for evaluating the effects of component and front end geometry changes. To solve such models for the air flow requires a robust iterative process that involves a number of non-linear sub-models. The cooling fan (s) constitute a major part of the difficulty, especially when they employ a viscous or “thermal” fan drive. This drive varies the torque coupling between the input and output shafts based on the radiator outlet air temperature. The coupling is achieved by viscous shear between two grooved disks and is regulated by a bimetal strip valve that varies the amount of fluid between the disks. This paper presents a mathematical model by which the input/output speed ratio may be determined as a function of the air temperature and input speed. Coefficients in the model are estimated from standard supplier performance information.
Technical Paper

Parametric study of side impact thoracic injury criteria using the MADYMO human body model

2001-06-04
2001-06-0182
This paper presents a computational study of the effects of three parameters on the resulting thoracic injury criteria in side impacts. The parameters evaluated are a) door velocity-time (V-t) profile, b) door interior padding modulus, and c) initial door-to-occupant offset. Regardless of pad modulus, initial offset, or the criterion used to assess injury, higher peak door velocity is shown to correspond with more severe injury. Injury outcome is not, however, found to be sensitive to the door velocity at the time of first occupant contact. A larger initial offset generally is found to result in lower injury, even when the larger offset results in a higher door velocity at occupant contact, because the increased offset results in contact later in the door V-t profile - closer to the point at which the door velocity begins to decrease. Cases of contradictory injury criteria trends are identified, particularly in response to changes in the pad modulus.
Technical Paper

Methodology for Measuring Tibial and Fibular Loads in a Cadaver

2002-03-04
2002-01-0682
Crash test dummies rely on biomechanical data from cadaver studies to biofidelically reproduce loading and predict injury. Unfortunately, it is difficult to obtain equivalent measurements of leg loading in a dummy and a cadaver, particularly for bending moments. A methodology is presented here to implant load cells in the tibia and fibula while minimally altering the functional anatomy of the two bones. The location and orientation of the load cells can be measured in all six degrees of freedom from post-test radiographs. Equations are given to transform tibial and fibular load cell measurements from a cadaver or dummy to a common leg coordinate frame so that test data can be meaningfully compared.
Technical Paper

Cooling Fan Modeling to Support Robust AC/Cooling System Simulation

2005-04-11
2005-01-1905
Advanced design of modern engine cooling and vehicle HVAC components involves sophisticated simulation. In particular, front end air flow models must be able to cover the complete range of conditions from idle to high road speeds involving multiple fans of varying types both powered and unpowered. This paper presents a model for electric radiator cooling fans which covers the complete range of powered and unpowered (freewheel) operation. The model applies equally well to mechanical drive fans.
Technical Paper

Detached Eddy Simulation on a Swept Hybrid Model in the IRT

2015-06-15
2015-01-2122
In recent years, there has been a growing desire to incorporate computational methods into aircraft icing certification practices. To improve understanding of ice shapes, a new experimental program in the NASA Icing Research Tunnel (IRT) will investigate swept hybrid models which are very large relative to the test section and are intended to operate at high lift coefficients. The present computations were conducted to help plan the experiments and to ascertain any effects of flow separation and unsteady forces. As they can be useful in robustly and accurately predicting large separation regions and capturing flow unsteadiness, a Detached Eddy Simulation (DES) approach has been adopted for simulating the flow over these large high-lift wing sections. The DES methodology was first validated using experimental data from an unswept NACA 0012 airfoil with leading-edge ice accretion, showing reasonable performance.
X