Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

High Speed Fuel Injection System for 2-Stroke D.I. Gasoline Engine

1991-02-01
910666
Two-stroke gasoline engines are known to benefit from using in-cylinder fuel injection which improves their ability to meet the strict fuel economy and exhaust emissions requirements. A conventional method of in-cylinder fuel injection involves application of plunger-type positive displacement pumps. Two-stroke engines are usually smaller and lighter than their 4-stroke counterparts of equal power and need a pump that should also be small and light and, preferably, simple in construction. Because a 2-stroke engine fires every crankshaft revolution, its fuel injection pump must run at crankshaft speed (twice the speed of a 4-stroke engine pump). An electronically controlled fuel injection system has been designed to satisfy the needs of a small automotive 2-stroke engine capable of running at speeds of up to 6000 rpm.
Technical Paper

Hybrid Powertrain with an Engine-Disconnecting Clutch

2002-03-04
2002-01-0930
Several types of hybrid-electric vehicles have been developed at Ford Research Laboratory. Among the parallel hybrid systems with a single electric motor, two types were studied. In the first type, the electric motor was attached directly to the crankshaft (mild hybrid) [1], to enable the engine start-stop and regeneration functions. In the second type (full hybrid) the electric motor was connected to the engine through the use of a clutch to allow electric launch of the vehicle and pure electric driving at low speeds. The full hybrid powertrain described in this paper uses a more powerful electric motor for enhanced regenerative braking and engine power assist. An engine-disconnecting clutch saves energy during both the electric propulsion and during vehicle braking. When the clutch is disengaged the engine is shut-off, which eliminates the energy otherwise spent on motoring the engine during electric propulsion.
Technical Paper

Electromagnetically Controlled Distributor-Type Fuel Injection System

1989-02-01
890477
With the advent of electronic controls and development of electromagnetically controlled fuel injection pumps, the cost of fuel systems using plunger-type pumps was substantially reduced. Further reduction in cost can be achieved if fewer solenoid valves are used. A new type of injection pump combining electromagnetic spill control principle with distributor-type operation is described. Only one solenoid valve is required for a multi-cylinder engine. The pump was designed for port injection of gasoline, but with some modifications could be adapted to direct fuel injection. The fuel injection system includes a controller capable of electronic trimming of port-to-port fuel distribution for tight control of air to fuel ratios in all engine cylinders. A review of the basic concept and operating principles is given, and test results as well as cost considerations are discussed.
Technical Paper

Design and Analysis of Starter-Alternator Installation in a Hybrid-Electric Vehicle

1999-03-01
1999-01-0917
The idea of using a single electrical machine for both starting the engine and generating electrical power is not new. However, the real benefits, that justify the higher cost of a combined starter-alternator, become apparent when it is used as part of a hybrid powerplant. This powerplant allows a substantial improvement in fuel economy by a variety of methods (i.e. the engine shut-down during deceleration and idle, regenerative braking, etc.), as well as enhancements to engine performance, emissions, and vehicle driveability. This paper describes the analysis of the structure supporting the starter-alternator on the end of the engine crankshaft (Figure 1). It deals with the requirement to maintain a small radial gap between the rotor and stator, and it discusses how the rotor affects the loading on the crankshaft. In addition, thermal deformations of the rotor/clutch assembly are analyzed with three light-weight materials.
X